

# **COURSE CONTENT**

## 1. Information about the program

| 1.1 Organization                | West University of Timisoara                             |  |
|---------------------------------|----------------------------------------------------------|--|
| 1.2 Faculty                     | Physics                                                  |  |
| 1.3 Department                  | Physics                                                  |  |
| 1.4 Field of study              | Physics                                                  |  |
| 1.5 Level                       | Master                                                   |  |
|                                 | Astrophysics, elementary particles and computational     |  |
| 1.6 Study program/qualification | physics/ according to COR: physicist (211101); teacher   |  |
|                                 | (233001); research assistant (248102); analyst (213101); |  |

### 2. Course information

| 2.1 Title                         |   |              | Computational physics       |   |                        |   |                 |    |
|-----------------------------------|---|--------------|-----------------------------|---|------------------------|---|-----------------|----|
| 2.2 Course instructor             |   |              | Lect. dr. Alexandra Popescu |   |                        |   |                 |    |
| 2.3 Laboratory/Seminar instructor |   |              | Lect. dr. Alexandra Popescu |   |                        |   |                 |    |
| 2.4 Year of study                 | I | 2.5 Semester |                             | 2 | 2.6 Type of evaluation | E | 2.7 Course type | DO |

### 3. Study time distribution (teaching hours per semester)

| 3.1 No. of hours/week                                                          | 3  | In which: 3.2 curs | 1  | 3.3 seminar/laboratory | 2  |
|--------------------------------------------------------------------------------|----|--------------------|----|------------------------|----|
| 3.4 Total hours in the educational                                             | 42 | In which: 3.5 curs | 14 | 3.6 seminar/laboratory | 28 |
| plan                                                                           |    |                    |    |                        |    |
| Time distribution:                                                             |    |                    |    |                        |    |
| Study of lecture notes, bibliography or notes                                  |    |                    |    |                        |    |
| Additional documentation in the library, electronic specialty platforms/ field |    |                    |    |                        | 20 |
| Seminar / laboratory preparations, homework, portfolio and essays              |    |                    |    |                        |    |
| Tutoring                                                                       |    |                    |    |                        |    |
| Exams                                                                          |    |                    |    |                        |    |
| Other activities                                                               |    |                    |    |                        |    |
| 3.7 Total hours of individual study                                            | 72 |                    |    |                        | •  |

| 5.7 Total Hours of Individual Study | 12  |
|-------------------------------------|-----|
| 3.8 Total hours in a semester       | 100 |
| 3.9 Number of credits               | 4   |

# 4. Prerequisites (if it is the case)

| 4.1 curriculum | Algorithms and programming                                                   |  |  |  |
|----------------|------------------------------------------------------------------------------|--|--|--|
|                | Introduction in programming                                                  |  |  |  |
|                | <ul> <li>Computational physics (undergraduate study)</li> </ul>              |  |  |  |
| 4.2 skills     | General skills: the ability to gain general basic knowledge; proper usage of |  |  |  |
|                | computer science terminology; basic programming skills                       |  |  |  |



### 5. Requirements (if it is the case)

| 5.1 for the course                | If required, the Google Meet and Google Classroom                   |
|-----------------------------------|---------------------------------------------------------------------|
| 5.2 de for the seminar/laboratory | platforms will be used to hand out the course and laboratory notes. |

# 6. Course objectives - expected learning outcomes that contribute to the training and passing of the course

| Knowledge                   | After successful completion of this course students can represent problems of various areas of application simplified, by means of mathematical models, describe and simulate numerically                              |
|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Abilities                   | The ability to use modelling software to solve numerical problems in the field of physics                                                                                                                              |
| Responsibility and autonomy | <ul> <li>Development of a multi- and interdisciplinary way of thinking</li> <li>Efficient usage of information sources and communication resources both in<br/>Romanian and in a foreign language (English)</li> </ul> |

### 7. Content

| 7.1 | L Course                    | Teaching methods       | Observations                     |
|-----|-----------------------------|------------------------|----------------------------------|
| 1.  | Projectile trajectory (1 h) | lecture, conversation, | Lectures given using Google      |
| 2.  | The pursuit problem (1 h)   | exemplification        | Meet and lecture notes in        |
| 3.  | Equation solving with and   |                        | electronic format will be shared |
|     | without a Solver (8 h)      |                        | via Google Classroom.            |
| 4.  | Fourier Transforms (4 h)    |                        |                                  |

### Bibliography:

- 1. T. A. Beu, Introduction to numerical programming A practical guide for Scientists and Engineers using Python and C/C++, CRC Press, Taylor & Francis Group, 2015
- 2. A.Klein, A. Godunov, Introductory Computational Physics, Cambridge University Press, New York, 2006
- 3. Bernard V. Liengme Modelling physics with Microsoft Excel, Morgan and Claypool Publishers 2014

| 7.2 Seminar / laboratory        | Teaching methods          | Observations                   |
|---------------------------------|---------------------------|--------------------------------|
| Exercises related to the course | Individual work under the | Students will solve practical  |
| topics                          | guidance of the lecturer  | problems with simulations      |
|                                 |                           | programs under the supervision |
|                                 |                           | of the instructor (via Google  |
|                                 |                           | Meet if necessary)             |

### Bibliography:

- 1. T. A. Beu, Introduction to numerical programming A practical guide for Scientists and Engineers using Python and C/C++, CRC Press, Taylor & Francis Group, 2015
- 2. A.Klein, A. Godunov, Introductory Computational Physics, Cambridge University Press, New York, 2006
- 3. Bernard V. Liengme Modelling physics with Microsoft Excel, Morgan and Claypool Publishers 2014



8. Corroborating the contents of the discipline with the expectations of the representatives of the epistemic community, professional associations and representative employers in the field related to the program

The computation physics course comes as a complement for the theoretical and experimental physics courses offering a future physicist an increased ability to understand the physical phenomena.

### 9. Evaluation

| Activity                                                                                       | 9.1 Evaluation      | 9.2 Evaluation methods         | 9.3 Percentage    |  |  |  |
|------------------------------------------------------------------------------------------------|---------------------|--------------------------------|-------------------|--|--|--|
|                                                                                                | criteria            |                                | of the final mark |  |  |  |
| 9.4 Course                                                                                     | The assimilation    | Assessment of the student's    |                   |  |  |  |
|                                                                                                | level of the gained | activity every week.           |                   |  |  |  |
|                                                                                                | knowledge           | The final grade depends on the |                   |  |  |  |
| 9.5 Seminar / laboratory                                                                       | Capacity of solving | points earned during the       |                   |  |  |  |
|                                                                                                | specific problem    | semester.                      |                   |  |  |  |
| 9.6 Minimum performance standards                                                              |                     |                                |                   |  |  |  |
|                                                                                                |                     |                                |                   |  |  |  |
| <ul> <li>numerical solution of equations by means of target value search and solver</li> </ul> |                     |                                |                   |  |  |  |

Data completării 25.01.2023 Titular de disciplină Lect. Dr. Alexandra POPESCU

Data avizării în departament

Director de departament Conf. Dr. Cătălin MARIN