

Anexa Nr. 2

Subject content

1. Program information

1.1. University	West University of Timișoara
1.2. Faculty	Physics
1.3. Departament	Physics
1.4. Study direction	Physics
1.5. Study cycle	Master
1.6. Study program*	Astrophysics, Elementary Particles and Computational
	Physics / conform COR: fizician (211101); profesor în învățământul gimnazial (232201 - în condițiile legii); asistent de cercetare (248102); referent de specialitate în învățământ (235204); analist (213101; analist financiar (241493).

2. Subject matter information

2.1. Subject matter			Ste	llar Astrophysics			
2.2. Subject teacher			Victor E. AMBRUŞ				
2.3. Subject applicat	tions	teacher Victor E. AMBRUŞ					
2.4. Study year	II	2.5. Semester	Ι	2.6. Assesment type	Е	2.7. Subject type	Ob - AP 2302

3. Study time distribution

3.1. Nr. of hours / week	4	In which: 3.2 course	2	3.3. Problem class	2
3.4. Total hours in educational plan	56	In which: 3.5 course	28	3.6. Problem class	28
Time distribution*					hrs
Study after lecture notes, bibliogra	phy or	notes			56
Additional documentation in the li	brary,	electronic specialty plat	forms	/ field	28
Seminar/ laboratory preparations, l	nomew	ork, portfolio and essay	ſS		28
Tuturing					16
Exams					16
Other activities					
3.7. Total number of personal study ¹⁴⁴					
hours					
3.8. Total number of hours in ²⁰⁰					
semester					
3.9. Number of credits ⁸					

4. Preconditions

4.1. Curriculum	Introduction in astronomy (AP1204);		
	Standard model (AP 1201);		
	Fizica atomului și moleculei (FF2301)		
	Electricitate și magnetism (FF1201);		
	Termodinamică și fizică statistică (FF3501);		
	Matematică II (Ecuațiile diferențiale ale fizicii matematice) (FF1203).		
4.2. Skills	General skills: ability to assimilate fundamental knowledge; correct usage of		
	physics-specific terminology; ability to work individually and as part of a team;		
	Professional skills: the correct identification and usage of the main laws and		
	principles of physics; ability to solve physics-specific problems.		

5. Course objectives – expected results achieved by attending and graduating this course

Knowledge	The correct identification and usage of the main laws and principles of physics relevant to this course în a given context Energy production, radiative transfer and strucutre of Sun-like stars Structure of degenerate stars: white dwarves Nuclear equation of state and neutron stars: M-R diagram
Abilities	Solving physics problems in given conditions, using analytical and numerical methods Identify fusion processes relevant for stellar energy production Radiative transfer and opacity inside stellar atmospheres Polytropic stars and white dwarf physics Solving the Tolman-Oppenheimer-Volkoff equation for stellar structure in general relativity Nuclear Field Theory models for dense nuclear matter and neutron star physics
Responsability and autonomy	Acquaintance with modern directions related to stellar astrophysics Understanding the physics behind stellar structure and evolution Learning about modern space missions such as NICER, aiming to measure simultaneously neutron star masses and radii.

6. Table of contents

6.1. Course	Teaching	Observations
	methods	
Chap.1. Stellar formation (2 hours)	Interactive	[1] Chap. 2; [2] Chap. 12; [2] Chap. 10
Gravitational collapse.	the	[5] Chap. 10.
The Virial theorem.	blackboard or	
The Jeans Criterion.	using the	
Chap.2. Nucleoynthesis and Stellar Evolution (4 hours)	beamer.	[1] Chap. 1.7, 6; [2] Chap.
The Hertzsprung-Russell diagram.		13, 15, 16; [3] Chap. 8.10-
Evolutionary track of stars on the H-R diagram.		0.17.
Nuclear fusion processes in the star interior.		
Heavy element nucleosynthesis.		
Novae, Supernovae and stellar remnants.		
Chap. 3. Radiative transfer (10 hours)		[1] Chap. 1.2, 1.3, 1.5, 3,
Electromagnetic radiation		4; [2] Chap. 5, 9.1, 9.5; [3]
Blackbody radiation.		Chap. 4.16; 5.5, 5.7-5.10;
Boltzmann and Saha equations.		0.13-0.24, 7, 0.7, 0.0.
Radiative transfer equation		
Opacity of spectral lines. Rosseland opacity		
Gray atmosphere. Spectral line formation.		
Chap. 4. Internal structure of stars (4 hours)		[1] Chap. 5; [2] Chap. 9,
Mixing length theory		10, 11;
Integrating stellar structure equations		
Chap. 5. Polytropic models (8 hours)		[1] Chap. 5.4; [2] Chap.
Lane-Emden equation		16; [4] Chap. 4, 5; [5]
Tolman-Oppenheimer-Volkoff equation		Chap. 5, 7.
Equation of state of dense nuclear matter		
β -equilibrium in neutron stars		
Bibliography		

1. Francis LeBlanc, An introduction to stellar astrophysics (Wiley, 2010). ISBN: 978-0-470-69956-0

2. Bradley W. Carroll, Dale A. Ostlie, An introduction to modern astrophysics (San Francisco, Pearson Addison-Wesley, 2007). ISBN: 978-0-321-44284-0.

3. Martin Harwitt, Astrophysical concepts (Springer, 2006). ISBN: 978-0-387-32943-7.

4. Norman K. Glendenning, Compact stars: Nuclear physics, particle physics, and general relativity (Springer, New York, USA, 1997).

5. Jürgen Schaffner-Bielich, Compact star physics (Cambridge University Press, 2020).

6.2. Seminar/laboratory	Teaching methods	Observations
Chap.1. Stellar formation (2 hours)	Problem	The bibliographic
Barometric formula.	solving at the	references follow those
Gravitational collapse of interstellar clouds.	DIackDoard	from the course.

Chap.2. Nucleoynthesis and Stellar Evolution (4 hours)	and in the	
Spectral classes.	notebooks.	
Timescales for the various stages of stellar evolution.		
Nuclear reactions in stellar interiors.		
Chap. 3. Radiative transfer (10 hours)		
Poynting-Robertson effect		
Motion in charged Fermi acceleration		
Boltzmann equation and excited atoms distribution		
Saha equation and ionization fractions		
Monochromatic and Eddington fluxes.		
Opacity and optical depth.		
Lorentz profile of the spectral lines. Equivalent width.		
Chap. 4. Internal structure of stars (4 hours)		
Equations of stellar structure		
Numerical integration of a stellar model (application)		
Chap. 5. Polytropic models (8 hours)		
M-V relation for light white dwarves.		
Chandrasekhar limit for heavy white dwarves.		
Constant density model for general relativistic stars.		
Causality limit of neutron star masses.		
Walecka σ - ω model for nuclear matter		
Isospin symmetry and ρ mesons		
npe μ model and β -equilibrium		
Neutron star mass-radius curve and comparison to		
experimental measurements		
Bibliography		
See 6.1. Course.		

7. Matching course contents with expectations of representatives of the academic community, of professional associations and of representative employers of the study programme domain

Knowing and understanding the specific phenomena studied in this course, formation and development of practical abilities to correctly and completely interpret results, practice of the teamwork spirit and of the ability to organise and investigate, nurturing a scientific environment based on values, professional ethics and quality. The course covers modern aspects of the physics of stars ranging from our Sun to extremely compact objects such as neutron stars. Graduates will have knowledge relevant to modern research fields and on-going experiments such as Super-Kamiokande for neutrino detection, NICER for neutron star mass and radius measurement, or CBM experiment at GSI for probing the nuclear equation of state at neutron star densities.

9. Assessment

Activity type <i>P</i>	Assessment criteria	Assessment methods	Percent în final
------------------------	---------------------	--------------------	------------------

			mark		
9.1. Course	For 50% marks: fundamental notions from this field.	1. Written evaluation: questions with multiple-choice	34%+33%		
	For 100% marks: advanced notions from this field.	answers.			
		2. Oral examination:			
		a) elementary topics;			
		b) advanced topics.			
9.2 Seminar/laboratory	For 50% marks: fundamental notions from this domain.	3. Written evaluation: Problem solving.	33%		
	For 100% marks: advanced				
	notions from this domain.				
10.6. Minimum performance standards					
50% marks for multiple	e-choice answer test;				
50% marks for problem	n test;				
Oral examination on el	ementary topics.				

Alternatively:

50% marks for multiple-choice answer test;

Written project on one of the course themes.

Minimum attendance: according to the applicable WUT regulations (course 50%; seminar 70%). Final mark: 34% multiple-choice test, 33% written exam, 33% oral examination. Bonus points awarded for good attendance and for timely homework submission.

Date:

16.09.2022

Signature of Head of Department:

Conf. Dr. habil. Cătălin MARIN