

SYLLABUS

1. Information on the study programme

1.1. Higher education institution	West University of Timisoara
1.2. Faculty	Faculty of Physics
1.3. Department	Physics Department
1.4. Study program field	Physics
1.5. Study cycle	Master
1.6. Study programme / Qualification	Astrophysics, elementary particles and computational
	physics/ according to COR: physicist (211101); teacher
	(233001); research assistant (248102);

2. Information on the course

2.1. Course title			Solar Resources in Space AP2305				
2.2. Lecture instructor	•		Dr. Robert Blaga				
2.3. Seminar / laborate	ory iı	nstructor	Dr. Robert Blaga				
2.4. Study year	1	2.5. Semester	2	2.6. Examination type	V	2.7. Course type	Ob

3. Estimated study time (number of hours per semester)

3.1. Attendance hours per week	3	out of which: 3.2 lecture	2	3.3. seminar / laboratory	1
3.4. Attendance hours per semester	42	out of which: 3.5 lecture	28	3.6. seminar / laboratory	14
Distribution of the allocated amount of time*					hours
Study of literature, course handbook and personal notes					28
Supplementary documentation at library or using electronic repositories					14
Preparing for laboratories, homework, reports etc.					28
Exams					3
Tutoring					-
Projects					14
3.7. Total number of hours of 87 individual study					· · ·

individual study	
3.8. Total number of hours per	129
semester	
3.9. Number of credits (ECTS)	5

4. Prerequisites (if it is the case)

4.1. curriculum	Mathematics, Computational physics	
4.2. competences	Elementary knowledge on programming computers	

5. Requirements (if it is the case)

5.1. for the lecture	-
5.2. for the seminar / laboratory	Individual access to computer

6. Specific acquired competences

Professional competences	Understanding the main themes from solar radiation physics Acquiring knowledge on solar radiation field			
	Explaining the quantities, concepts and phenomena in the field of solar radiation using terms, notions, theories, models, equations,			
	schemes and graphical representations.			
	• Elaboration of numerical algorithms for estimating the available			
	solar energy in space and the amount of electricity that can be obtained from it by photovoltaic conversion.			
Transversal competences	Accessing the NASA database, selecting and sorting data			
	Explaining data meaning using specific statistical methods			
	• Developing the skills to use the MathCAD programming environment			

7. Course objectives

7.1. General objective	Understanding photovoltaic conversion of solar energy in the	
	terrestrial and extraterrestrial environment.	
7.2. Specific objectives	Developing students' skills to calculate solar energy in the	
	extraterrestrial space, on the Moon and Mars.	
	Developing students' skills to size the photovoltaic generators	
	operating in the extraterrestrial space.	

8. Content

8.1. Lecture	Teaching methods	Remarks, details
	<u> </u>	· · · · · · · · · · · · · · · · · · ·
1. Course Introduction.	Interactive lecture	In person
2. The Sun. General	Interactive lecture	In person
parameters of the Sun.		
3. Solar radiation. Solar	Interactive lecture	In person
energy at the top of the		
terrestrial atmosphere		
4. Propagation of solar flux	Interactive lecture	In person
through the atmosphere.		
Atmospheric transmittances		
5. Solar irradiance	Interactive lecture	In person
modelling. Beam		
component.		
6. Solar irradiance	Interactive lecture	In person
modelling. Diffuse		
component.		
7. Solar irradiance	Interactive lecture	In person
modelling. Sources of data.		
8. Solar irradiance in the	Interactive lecture.	In person
extraterrestrial		
environment.		

9. Solar energy at the surface of the Moon and Mars.	Interactive lecture	In person
10. Photovoltaic cells	Interactive lecture	In person
11. Spectral characteristics of a PV cell.	Interactive lecture	In person
12. Modelling the operation of a PV cell in space	Interactive lecture	In person
13. Project. Designing a PV generator operating on the Mars surface.	Interactive lecture. Guidance Questioning	In person
14. Other ways of valorizing the solar resource in space.	Interactive lecture.	In person

Recommended literature

1. Paulescu M. Resurse energetice in sistemul solar. Notite de curs si seminar.

http://www.physics.uvt.ro/~marius/res

2. M. Paulescu, E. Paulescu, P. Gravila, V. Badescu, Weather Modeling and Forecasting of PV Systems Operations, Springer, Berlin, 2013.

Badescu V (Ed) (2011) Mars. Prospective Energy and Material. Springer, Berlin.

3. Basescu V (Ed) (2012) The Moon, Springer, Berlin.

4. Muneer T (2004) Solar radiation and daylighy models (Second Ed), Elsevier Butterworth-Heinemann, Amsterdam, NL.

5. Schrunk DG, Sharpe BL, Cooper BL, Thangavelu M (2008) The Moon. Resource, future development and settlement (Second Ed.) Springer, Berlin.

6. Mullan DJ (2010) Physics of the Sun, CRC Press, Boca Raton.

8.2. Seminar / laboratory	Teaching methods	Remarks, details
1. Solar radiation. Solving problems	Guidance Questioning	
2. Estimation the solar energy on the Earths's surface. Solving problems	Guidance Questioning Individual implementation of the numerical algorithms	
3. Estimation of the solar energy on the Earth's surface. Solving problems.	Guidance Questioning Individual implementation of the numerical algorithms	
4. Exploring various databases (BSRN,	Guidance Questioning	

AERONET, various NATA sources)	Individual implementation of the numerical algorithms	
5. Estimation the solar energy on Mars.	Guidance Questioning Individual implementation of the numerical algorithms	
6. Estimating the properties of a solar cell. Interpreting an I- V characteristic.	Guidance Questioning Processing data.	
7. Project. Designing a PV generator operating on the Mars surface.	Guidance Questioning Individual implementation of the numerical algorithms	

Recommended literature

1. A. Luque, S. Hegedus. Handbook of photovoltaic science and engineering. John Wiley & Sons (2011).

2. M. Paulescu. Solar Resources in Space. Lecture notes. http://www.physics.uvt.ro/~marius/res

10. Evaluation

Activity	10.1. Assessment criteria	10.2. Assessment	10.3. Weight in
		methods	the final mark
Lecture	Theoretical knowledge	Continuous assessment	33.3%
Seminar /	Solving problems.	Continuous assessment	33.3 %
laboratory	Projects	End of year	33.3 %
10.6. Minimum needed performance for passing			

The student is able to estimate the available solar energy on the top of the atmosphere and to model a solar cell operating at STC.

Date of completion

Signature (lecture/seminar instructor)

15.09.2022

Dr. Robert Blaga

Date of approval

Signature (director of the department)