

FISA DISCIPLINEI Syllabus

1. Information about the program

1.1. University	West University of Timisoara		
1.2. Faculty	PHYSICS		
1.3. Department	PHYSICS		
1.4. Study direction	PHYSICS		
1.5. Study cycle	MASTER		
1.6. Study program / qualification	PHYSICS AND TECHNOLOGY OF ADVANCED		
	MATERIALS / according to COR: Analyst - 251201;		
	Research assistant in physics - 211103; Physicist - 211101;		
	Teacher - 233002;		

2. Subject matter information

2.1. Subject matter	Magnetic active materials PTAM 1104
2.2. Subject teacher	Lecturer Dr. Nicoleta Stefu
2.3. Subject applications teacher (seminar / laboratory)	Lecturer Dr. Nicoleta Stefu
2.4. Study year12.5. Semester	12.6. Assessment typeE2.7. Subject typeOp

3. Study time distribution

3.1. Nr. of hours/week	4	In which: 3.2 course	ourse 2 3.3. seminar/laborator		0/2
3.4. Total hours in educational plan	56	In which: 3.5 course	28	3.6. seminar/laboratory	28
Time distribution:					hours
Study after lecture notes, bibliography or notes				60	
Additional documentation in the library, electronic specialty platforms/ field					20
Seminar / laboratory preparations, homework, portfolio and essays					30
Tutoring				0	
Exams					10
Other activities				-	
3.7. Total number of personal study ho	ur	120			
3.8. Total number of hours in semester		176			

3.9. Number of credits

4. Preconditions (where appropriate)

4.1. curriculum	Mathematics - Analysis
	• Electricity and magnetism
	Differential and integral calculus
	• Physics of the atom

7

4.2. Competences	• General competencies: the ability of analysis and synthesis; accumulation of basic general knowledge; proper use of terminology in physics and computer science in written and oral communication in English; Basic Skills PC operating; ability to work independently and in teams.
	 Professional Skills: identification and proper use of the main physical laws and principles in a given context; use of software packages for data analysis and processing.

5. Conditions (where appropiate)

5.3 for course	• Laptop + projector+ whiteboard
5.4 for seminar/lab	 Devices from the lab of Magnetic Materials PC. Each seminar activity will be done in small groups (3-4 students) on the topics described in the seminar section.

6. Specific skills gained

Professional competences	 C1. Learning of a coherent and functional fundamental knowledge system in material science; C2. Capacity to characterize specific materials properties in relation with their applications; C3. Use of methods for investigation of the structure of materials; C4. Comparison of experimental results with theoretical models. 			
Transversal	T1. Ability to obtain and analyse information through ICT			
competences	T2. Team work			
	T3. Capacity for communication			
	T4. Reflective thinking			
Key competences	K1. Literacy competences			
	K2. Mathematical competences			
	K3. Digital competences			
	K4. Efficient use of informational and communication resources in English			
	language.			
	K5. Learning competences			

7. Course Objectives

Ū		
7.1 Main Objective	•	OG: To gain knowledge of physical phenomena in magnetic

	materials in magnetic field.				
7.2 Specific objectives	O1: To understand the origin of magnetism and the magnetic				
	phenomena.				
	O2: To put into practice the knowledge gained in characterizing				
	magnetic materials				
	O3: To develop the capacity for organization and investigation.				
	O4: To use mathematic calculation and specific software in order to				
	process data.				

8. Table of content

8.1 Course – 28 hours	Teaching methods	Observations
 Lecture 1. (4 hours) Introductory lecture. Chapter 1. Magnetic materials. Angular momenta; Magnetic Moments Contributes to OG and O1 contributes to the formation of professional competences C1 and C2 contributes to the formation of Key Competences competences K2 and K4 	Lecture, introductory conversation, heuristic conversation, illustration, use of analogies and algorithms.	 The lecture will be interactive; learning is facilitated by engaging the students in conversation episodes, capture of attention, updating the knowledge previous acquired and systematization / fixing of new knowledge Compulsory reading: Lecture notes 1 available on e-learning platform Optional supplementary material: [1] Pages 87-90 [4] pages 62-67 Video This lecture is part of 8.02 Physics II: Electricity and Magnetism, as taught in Spring 2002 by Dr. Walter Lewin at MIT. https://www.youtube.com/watch?v=TJ GRatHJgEI
Lecture 2 (4 hours) Magnetic Moment and its Energy in a Magnetic Field; Definitions of Magnetization and Magnetic Susceptibility; Classification of Magnetic Materials; Diamagnetism; Paramagnetism. The Langevin Function of Magnetization and the Curie Law	Lecture, conversation, mathematical calculation, fixing and deepening knowledge Building a mind map	Compulsory reading: Lecture notes 2 available on e-learning platform Optional supplementary material: [1] Pages 90-99 [4] pages 104-106

 OG and O1 contributes to the formation of professional competences C1 and C2 contributes to the formation of Key Competences competences K2 and K4 Lecture 3 (4 hours) The Brillouin Function of Magnetization and the Curie Law; Magnetic Ordered State; Weiss molecular field theory (the classical theory); Generalization of Weiss molecular field theory; Magnetism and hysteresis OG and O1 contributes to the formation of professional competences C1 and C2 contributes to the formation of Key Competences competences K2 and K4 	Lecture, conversation, mathematical calculation, fixing and deepening knowledge	Compulsory reading: Lecture notes 3 available on e-learning platform Optional supplementary material: [1] Pages 117-128 [2] pages 53-59 [4] pages 107-110
 Competences K2 and K4 Lecture 4 (4 hours) The quantum theory of ferromagnetism. The Heitler –London model. The Heisenberg-Dirac hamiltonian. The exchange interaction ; Magnetism and hysteresis. Chapter 2. Magnetic anisotropy. Anisotropy OG and O1 contributes to the formation of professional competences C1 and C2 contributes to the formation of Key Competences competences K2 and K4 	Lecture, conversation, mathematical calculation, fixing and deepening knowledge	Compulsory reading: Lecture notes 4 available on e-learning platform Optional supplementary material: [1] Pages 197 [2] pages 63-65 [4] pages 168
 Lecture 5 (4 hours) Crystallographic anisotropy; Shape anisotropy; Induced anisotropy. Magnetostriction; Other ferromagnetic phenomena (magneto-caloric, magneto- resistance, magneto-optic) OG and O1 contributes to the formation of professional competences C1 and C2 contributes to the formation of Key Competences competences K2 and K4 	Lecture, conversation, mathematical calculation, fixing and deepening knowledge	Compulsory reading: Lecture notes 5 available on e-learning platform Optional supplementary material: [1] Pages 198-204 [2] pages 63-65 [4] pages 169-187
Lecture 6 (4 hours) Chapter 3. Magnetization dynamics Larmor precession. Electron paramagnetic	Lecture, conversation, mathematical calculation, fixing and deepening knowledge	Compulsory reading: <i>Lecture notes 6</i> available on e-learning platform

 resonance; Bloch equations. Magnetic resonance. Magnetic relaxation; Ferromagnetic resonance ; Antiferromagnetic resonance OG and O1 contributes to the formation of professional competences C1 and C2 contributes to the formation of Key Competences competences K2 and K4 		Optional s [1] Pages 4 [4] pages 3	
Lecture 7 (4 hours) Chapter 4. Magnetic nanoparticle systems and applications Characteristic length scales; Small particles ; Quantum dots and molecular clusters; Bulk nanostructures; Ferrofluids; Magneto- rheological and magneto-elastic systems; Smart materials	Lecture, conversation, retaining and deepening knowledge conversation	Lecture no platform Optional s [3] pages	ory reading: otes 7 available on e-learning supplementary material: 177-189 264-268, 293-300
 OG and O1 contributes to the formation of professional competences C1 and C2 contributes to the formation of Key Competences competences K2 and K4 			
Bibliography1.B. D. Cullity, C. D. Graham, Introduction Te2.Peter Mohn, Magnetism In The Solid State,3.Nicola Spaldin, Magnetic Materials, Fundar4.J.M.D. Coey, Magnetism and magnetic mate	An Introduction, Corrected S mentals And Applications,	Second Prir Cambridge	nting, 2006, Springer University Press, 2011
8.2 Seminar / labs	Teaching metho	ds	Observations/Bibliog raphy
 Seminar 1. (4 hours) Methods for measuring the magnetic susceptibility contributes to the formation of professional competences C3 contributes to the formation of Key Competences competences K1 	Discussion on various methods for measuring the magnetic susceptibility and magnetic permeability		Compulsory reading: <i>Laboratory notes</i> available on the e- learning platform
Seminar 2. (4 Hours) Determination of the saturation magnetisation and of the dimension of the particles of a ferofluid by means of magnetisation curve.	Data processing and interp of the results. Students will work in sma (3-4 students). Will read ar the article in bibliography given a set of measuren	all groups nd discuss 7, will be	Compulsory bibliography: I. Hrianca, I. Malaescu, C. N. Marin, N. Stefu, Magnetic relaxation

 contributes to the formation of professional competences C2, C3, C4 contributes to the formation of Key Competences competences K1, K2, K3, K4 Students will: put into practice the knowledge gained in characterizing magnetic materials (O2). develop the capacity for organization and investigation. (O3) use mathematic calculation and specific software in order to process data (O4). Students will develop the following transversal competences T1, T2, T3 and T4 	will follow the algorithm described in article and do the calculations presented there, using the appropriate software. In the end they will present their work and the results, discussing the differences between their results and the ones presented in the article.	processes in radio- frequency field for dispersed monodomenic particles, Analele Uiversitatii de Vest din Timisoara, Vol. XXXVI, Seria Stiinte Fizice (1997) 17
 Seminar 3. (4 hours) Determination of particle dimension by means of Neel and Brown relaxation times in suspensions of magnetic nanoparticles. • contributes to the formation of professional competences C2, C3, C4 • contributes to the formation of Key Competences competences K1, K2, K3, K4 Students will: • put into practice the knowledge gained in characterizing magnetic materials (O2). • develop the capacity for organization and investigation. (O3) • use mathematic calculation and specific software in order to process data (O4). Students will develop the following transversal competences T1, T2, T3 and T4 	Data processing and interpretation of the results. Students will work in small groups (3-4 students). Will read and discuss the article in bibliography, will be given a set of measurements and will follow the algorithm described in article and do the calculations presented there, using the appropriate software. In the end they will present their work and the results, discussing the differences between their results and the ones presented in the article.	Compulsory bibliography: I. Malaescu, L. Gabor, F. Claici, N. Stefu , "Preparation of ferrofluids with magnetite and mixed ferrite particles and characterization in a radiofrequency field", Analele Uiversitatii de Vest din Timisoara, Vol. XXXVIII, Seria Stiinte Fizice (1998) 90
 Seminar 4. (4 hours) Determination of the magnetic properties of the ferrofluid from resonance measurements • contributes to the formation of professional competences C2, C3, C4 • contributes to the formation of Key Competences competences K1, K2, K3, K4 	Data processing and interpretation of the results. Students will work in small groups (3-4 students). Will read and discuss the article in bibliography, will be given a set of measurements and will follow the algorithm described in article and do the calculations presented there, using the	Compulsory bibliography: I. Hrianca, I. Malaescu, N. Stefu, F. Claici, Behavior in Radiofrequency Field and Magnetic Resonance of

 Students will: put into practice the knowledge gained in characterizing magnetic materials (O2). develop the capacity for organization and investigation. (O3) use mathematic calculation and specific software in order to process data (O4). Students will develop the following transversal competences T1, T2, T3 and T4 	appropriate software. In the end they will present their work and the results, discussing the differences between their results and the ones presented in the article.	<i>Ferrofluids,</i> Analele Universitatii de Vest din Timisoara, Vol. XL, Seria Stiinte Fizice, (1999)
 Seminar 5. (4 hours) Determination of anisotropy constant by means of magnetic resonance contributes to the formation of professional competences C2, C3, C4 contributes to the formation of Key Competences competences K1, K2, K3, K4 Students will: put into practice the knowledge gained in characterizing magnetic materials (O2). develop the capacity for organization and investigation. (O3) use mathematic calculation and specific software in order to process data (O4). Students will develop the following transversal competences T1, T2, T3 and T4 	Data processing and interpretation of the results. Students will work in small groups (3-4 students). Will read and discuss the article in bibliography, will be given a set of measurements and will follow the algorithm described in article and do the calculations presented there, using the appropriate software. In the end they will present their work and the results, discussing the differences between their results and the ones presented in the article.	Compulsory bibliography: P.C.Fannin, C.N.Marin, I. Malaescu, N.Stefu, "An investigation of the microscopic and macroscopic properties of magnetic fluids", Physica B: Condensed Matter, Volume 388, Issues 1-2, Pages 1-440 (15 January 2007) Pages 87-92
Seminar 6 (4 hours) Study of the anisotropy constant and Lande factor by means of static and dynamic measurements in ferrofluids with mixed ferrite particles • contributes to the formation of professional competences C2, C3, C4 • contributes to the formation of Key Competences competences K1, K2, K3, K4 Students will: • put into practice the knowledge gained in characterizing magnetic materials (O2).	Data processing and interpretation of the results. Students will work in small groups (3-4 students). Will read and discuss the article in bibliography, will be given a set of measurements and will follow the algorithm described in article and do the calculations presented there, using the appropriate software. In the end they will present their work and the results, discussing the differences between their results and the ones presented in the article.	Compulsory bibliography: I. Malaescu, N. Stefu, L. Gabor, <i>Relaxation</i> Process and Ferromagnetic Resonance Investigation of Ferrofluids with Mn – Zn and Mn – Fe Mixed Ferrite Particles, J. Magn. Magn. Mater, 234 (2001) 299-305

 develop the capacity for organization and investigation. (O3) use mathematic calculation and specific software in order to process data (O4). Students will develop the following transversal competences T1, T2, T3 and T4 Seminar 7. (4 hours) 	Data processing and interpretation	Compulsory
 Determination of the microwave specific loss power of magnetic fluids subjected to a static magnetic field contributes to the formation of professional competences C2, C3, C4 contributes to the formation of Key Competences competences K1, K2, K3, K4 Students will: put into practice the knowledge gained in characterizing magnetic materials (O2). develop the capacity for organization and investigation. (O3) use mathematic calculation and specific software in order to process data (O4). Students will develop the following transversal competences T1, T2, T3 and T4 	of the results. Students will work in small groups (3-4 students). Will read and discuss the article in bibliography, will be given a set of measurements and will follow the algorithm described in article and do the calculations presented there, using the appropriate software. In the end they will present their work and the results, discussing the differences between their results and the ones presented in the article.	bibliography: P.C.Fannin, I. Malaescu, C.N.Marin, N.Stefu, Microwave specific loss power of magnetic fluids subjected to static magnetic field, Eur. Phys. J. E., 27, 145-148 (2008)

Bibliography

- 1. I. Hrianca, I. Malaescu, C. N. Marin, N. Stefu, *Magnetic relaxation processes in radio-frequency field for dispersed monodomenic particles*, Analele Uiversitatii de Vest din Timisoara, Vol. XXXVI, Seria Stiinte Fizice (1997) 17
- 2. I. Malaescu, L. Gabor, F. Claici, N. Stefu, "Preparation of ferrofluids with magnetite and mixed ferrite particles and characterization in a radiofrequency field", Analele Uiversitatii de Vest din Timisoara, Vol. XXXVIII, Seria Stiinte Fizice (1998) 90
- 3. I. Hrianca, I. Malaescu, N. Stefu, F. Claici, *Behavior in Radiofrequency Field and Magnetic Resonance of Ferrofluids,* Analele Universitatii de Vest din Timisoara, Vol. XL, Seria Stiinte Fizice, (1999)
- 4. P.C.Fannin, C.N.Marin, I. Malaescu, N.Stefu, "An investigation of the microscopic and macroscopic properties of magnetic fluids", Physica B: Condensed Matter, Volume 388, Issues 1-2, Pages 1-440 (15 January 2007) Pages 87-92

5. I. Malaescu, N. Stefu, L. Gabor, *Relaxation Process and Ferromagnetic Resonance Investigation of Ferrofluids with Mn – Zn and Mn – Fe Mixed Ferrite Particles, J. Magn. Magn. Mater*, 234 (2001) 299-305

P.C.Fannin, I. Malaescu, C.N.Marin, N.Stefu, Microwave specific loss power of magnetic fluids subjected to static magnetic field, Eur. Phys. J. E., 27, 145-148 (2008)

9. Relation between subject content and the expectations of employers

10.	Assesment
-----	-----------

•

Activity type	10.1 Assesment criteria	10.2 Assesment method	10.3 Percent in final mark	
10.4 Course	 the clarity, logic and scientific level of the presentation will be evaluated; correctness of the answers to the questions will be evaluated The ability of explaining the studied magnetic phenomena will be evaluated 	Summative assessment - Oral examination based on an essay on a topic discussed in class, presented in English	70%	
10.5. Seminar/labs	 After each seminar activity, each student will present a report in English and will be evaluated as follows: -his/her work in the group will be assessed the correctness of results obtained after processing the data will be discussed and evaluated the problems that occurred and the way they were solved during the activity will be evaluated the discussion on the correlation with the results presented in the article will be evaluated. 	Formative assessment: - continuous	30%	
10.6 Minimum performance standards				
Mark 5 corresponds to the minimum accumulated knowledge, i.e. for the student capacity to:				
• Correctly answer 3 questions from the theoretical part (in final evaluation), mark 5 in seminar.				

Completion date: 14.09.2022

Subject teacher's signature:

Associate Professor Dr. Nicoleta STEFU,

Subject applications teacher's signature: Associate Professor Dr. Nicoleta STEFU,

> Department Director' Signature: Associate Professor Dr. Cătălin Nicolaie Marin