

## FISA DISCIPLINEI Syllabus

### 1. Information about the program

| 1.1. University                    | West University of Timisoara                                |  |  |  |
|------------------------------------|-------------------------------------------------------------|--|--|--|
| 1.2. Faculty                       | PHYSICS                                                     |  |  |  |
| 1.3. Department                    | PHYSICS                                                     |  |  |  |
| 1.4. Study direction               | PHYSICS                                                     |  |  |  |
| 1.5. Study cycle                   | MASTER                                                      |  |  |  |
| 1.6. Study program / qualification | PHYSICS AND TECHNOLOGY OF ADVANCED                          |  |  |  |
|                                    | MATERIALS / according to COR: Analyst - 251201;             |  |  |  |
|                                    | Research assistant in physics - 211103; Physicist - 211101; |  |  |  |
|                                    | Teacher - 233002;                                           |  |  |  |

#### 2. Subject matter information

| 2.1. Subject matter                    |              |                | Defects in crystals              |              |            |   |                   |                 |
|----------------------------------------|--------------|----------------|----------------------------------|--------------|------------|---|-------------------|-----------------|
| 2.2. Subject teache                    | r            |                | Assoc. prof. dr. Marius Ștef     |              |            |   |                   |                 |
| 2.3. Subject ap<br>(seminar / laborato | plica<br>ry) | ations teacher | her Assoc. prof. dr. Marius Stef |              |            |   |                   |                 |
| 2.4. Study year                        | 2            | 2.5. Semester  | 3                                | 2.6.<br>type | Assessment | E | 2.7. Subject type | Ор-<br>РТАМ2304 |

## 3. Study time distribution

| 3.1. Nr. of hours/week                                            | 3       | In which: 3.2 course     | 2       | 3.3. seminar/laboratory | 1     |
|-------------------------------------------------------------------|---------|--------------------------|---------|-------------------------|-------|
| 3.4. Total hours in educational plan                              | 42      | In which: 3.5 course     | 28      | 3.6. seminar/laboratory | 14    |
| Time distribution:                                                |         |                          |         |                         | hours |
| Study after lecture notes, bibliog                                | raphy o | or notes                 |         |                         | 20    |
| Additional documentation in the                                   | library | , electronic specialty p | latfori | ns/ field               | 14    |
| Seminar / laboratory preparations, homework, portfolio and essays |         |                          |         |                         | 14    |
| Tutoring                                                          |         |                          |         |                         | 8     |
| Exams                                                             |         |                          |         |                         | 14    |
| Other activities                                                  |         |                          |         |                         |       |
| 3.7. Total number of personal study ho                            | ur      | 84                       |         |                         |       |
| 3.8. Total number of hours in semester                            |         | 42                       |         |                         |       |

3.9. Number of credits 6

# 4. Preconditions (where appropriate)

| 4.1. curriculum  | • | Complements of solid state physics and statistical physics |  |  |
|------------------|---|------------------------------------------------------------|--|--|
|                  | • | Fizica solidului si a semiconductorilor                    |  |  |
| 4.2. Competences | • |                                                            |  |  |



## 5. Conditions (where appropiate)

| 5.3 for course      | • laptop              |
|---------------------|-----------------------|
|                     | • projector           |
| 5.4 for seminar/lab | • laptop              |
|                     | • projector           |
|                     | • experimental set-up |

## 6. Specific skills gained

| Professional | • Capacity of analyze and synthesize (adaptability to new situation,                       |
|--------------|--------------------------------------------------------------------------------------------|
| competences  | realization of synthesis and comparisons, correlations and propinquity).                   |
|              | • Basic knowledge (thermodynamics of crystallization)                                      |
|              | • Basic knowledge necessary to profess (presentation, dialog)                              |
|              | • Knowledge of foreign languages (English)                                                 |
|              | • Theoretical understanding (of evolution of basic concepts in physics of crystallization) |
|              | • Deep understanding (of basic notions, of physical parameters)                            |
|              | • Experimental skills (the understanding of experiments)                                   |
|              | • Computational skills (PC uses for research, data acquisition)                            |
|              | Culture in Physics domain                                                                  |
|              | Bibliography investigation                                                                 |
|              | • Learning skills                                                                          |
|              | • Skills for team working                                                                  |
|              | • The capacity to transfer the acquired knowledge in practical applications                |
|              | • Capacity to plan and organize experimental or theoretical applications                   |
|              | • Capacity of solving characteristic problems for real physical systems.                   |
|              | • Capacity of critical evaluations and auto evaluation.                                    |
|              | Capacity of communication inside a group                                                   |
| Transversal  | • Effective use of information sources, communication resources and                        |
| competences  | training assistance (Internet portals, specialized software, data bases,                   |
|              | online courses, etc.) both in romanian and in a foreign language (english).                |

# 7. Course Objectives

| 7.1 Main Objective      | • OG: Students to identify the specific concepts and phenomena ia       |  |  |  |  |
|-------------------------|-------------------------------------------------------------------------|--|--|--|--|
|                         | a given context and to apply these knowledge in the analysis and        |  |  |  |  |
|                         | interpretation of experimental data.                                    |  |  |  |  |
| 7.2 Specific objectives | O.c1: Students to define the specific notions of this discipline and to |  |  |  |  |
|                         | describe the phenomena                                                  |  |  |  |  |
|                         | O.ap2: Students to use correct laboratory equipment to perform          |  |  |  |  |
|                         | measurements.                                                           |  |  |  |  |



| O.ap3: Students to process experimental data using software packages |              |        |         |       |         |        |           |
|----------------------------------------------------------------------|--------------|--------|---------|-------|---------|--------|-----------|
| and                                                                  | correctly    | in     | terpret | the   | experim | nental | results.  |
| O.ap5: Students to develop their organizational capacity             |              |        |         |       |         |        |           |
| O.at6:                                                               | Students     | to     | develop | their | spirit  | of     | teamwork. |
| O.at7: Students to appreciate and cultivate a scientific environment |              |        |         |       |         |        |           |
| based o                                                              | n values and | l qual | ity     |       |         |        |           |

#### 8. Table of content

| 8.1. Lecture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Teaching methods                                                         | Remarks, details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 1. Introduction. Classification of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Exposure,                                                                | The lecture will be interactive,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| defects in crystals. (2 hr.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | introductory                                                             | conducting learning being                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| <ol> <li>Types of point defects</li> <li>Thermodynamics of crystallization processes. Gibbs-Thomson equation. Wulf theorem. Crystal shapes. (2 hr.)</li> <li>Homogeneous and heterogeneous nucleation (2 hr.)</li> <li>Crytsalization of multicomponent materials (2 hr.)</li> <li>Phase diagrams. Segregation (2 hr.)</li> <li>Impurities centers. (2 hr.)</li> <li>Dislocations (2 hr.)</li> <li>Crystal growth models. Jackson model (2 hr.)</li> <li>Crystallization interface stability. (2 hr.)</li> <li>F color centers (2 hr.)</li> <li>F color ceters (2 hr.)</li> <li>F color ceters. (2 hr.)</li> </ol> | conversation, heuristic<br>conversation, illustration<br>using analogies | facilitated by engaging students in<br>conversation episodes - to catching<br>the attention, for updating of some<br>knowledge acquired at university<br>courses and systematization /<br>fixing the new knowledge (OG and<br>O.c1).<br>Students will develop their ability<br>in of analysis and synthesis,<br>Students will use correctly the the<br>terminology in physics in writing<br>and oral communication.<br>Students will become familiar with<br>a scientific environment based on<br>values and quality (O.at7) |  |  |

#### **Recomanded literature**

1. I. Nicoară, Defecte de structură în cristale, Ed. Mirton, Timișoara, 2003

- 2. M. Ștef, I. Nicoară, Caracterizarea defectelor de structură cristalină, Ed. Marineasa, Timișoara, 2009
- 3. S. Amelinckx, The direct observations of dislocations, Acad. Press, N.Y. 1964
- 4. A.A.Kaminskii, Laser Crystals, Their Physics and Properties, Springer-Verlag, Barlin, 1981
- 5. I.Nicoară, D.Nicoară, Cristale artificiale, Ed.Mirton, Timișoara, 1999

6. Y. Quere, *Physics of materials*, Gordon and Breach Science Publishers, 1998.

7. W. Fowler, *Physics of color centers*, Acad. Press, 19688. B. Henderson, R. Bartram, "Crystal-Field Engineering of Solid-State Laser Materials", Cambridge University Press, 2000

| 8.2. Seminar / Laboratory                | Teaching methods Remarks, details |                                 |  |
|------------------------------------------|-----------------------------------|---------------------------------|--|
| 1. Crystalline structures. (2 hr)        | Demonstrative                     | Students will form / practice / |  |
| 2. Point defects in various crystals. (2 | experiments in order to           | develop:                        |  |



| hr)                                       | illustrate the phenomena   | • Ability to handle the laboratory  |
|-------------------------------------------|----------------------------|-------------------------------------|
| 3. Direct observation of the              | or processes, verification | equipment in order to perform       |
| dislocations. (2 hr)                      | of laws and assumptions.   | measurements, to process data and   |
| 4. Determination of dislocation's         | It will call on analogies  | to analyse the experimental results |
| density in crystals. (2 hr)               | and algorithms.            | (O.ap2).                            |
| 5. Electrolytic coloration of the         |                            | • teamwork spirit (O.at6).          |
| crystals. (2 hr)                          |                            | • Ability to organize and to        |
| 6. Optical characterization of F centers. |                            | investigate (O.ap5).                |
| (2 hr)                                    |                            |                                     |
| 7. Impurities in $CaF_2$ crystals;        |                            | Students will use appropriate       |
| modeling of crystal field symmetry. (2    |                            | statistical and numerical methods   |
| hr)                                       |                            | for analysis of physical processes  |
|                                           |                            | (O.ap3). Experimental data and      |
|                                           |                            | graphs will be done using Excel,    |
|                                           |                            | Origin and MathCad.                 |
| Recomanded literature                     |                            |                                     |

1. M. Ștef, I. Nicoară, Caracterizarea defectelor de structură cristalină, Ed. Marineasa, Timișoara, 2009

2. I. Nicoară, Defecte de structură în cristale, Ed. Mirton, Timișoara, 2003

3. S. Amelinckx, The direct observations of dislocations, Acad. Press, N.Y. 1964

### 9. Relation between subject content and the expectations of employers

•

#### 10. Assesment

| Activity                                                             | 10.1 Assesment criteria                | 10.2 Assessment method | 10.3 Percent in |  |  |  |
|----------------------------------------------------------------------|----------------------------------------|------------------------|-----------------|--|--|--|
|                                                                      |                                        |                        | final mark      |  |  |  |
| <b>10.4 Lecture.</b><br>will take place face-to-face.                | answers at exams (final evaluation)    | oral                   | 50%             |  |  |  |
|                                                                      |                                        |                        |                 |  |  |  |
| <b>10.5. Seminar/labs</b><br>will take place face to                 | final answers at laboratory activities | oral                   | 25%             |  |  |  |
| face                                                                 | tests along the laboratories           | oral                   | 25%             |  |  |  |
| 10.6 Minimum performance standards                                   |                                        |                        |                 |  |  |  |
| • correct formulation of the proposed subject without demonstrations |                                        |                        |                 |  |  |  |

Completion date: Subject teacher's signature: S

Subject applications teacher's signature:

September 15<sup>th</sup> 2022

Assoc. prof. dr. Marius STEF

Assoc. prof. dr. Marius STEF



Department Director' Signature: Assoc. prof. dr. Catalin MARIN