

FISA DISCIPLINEI Syllabus

1. Information about the program

1.1. University	West University of Timisoara
1.2. Faculty	PHYSICS
1.3. Department	PHYSICS
1.4. Study direction	PHYSICS
1.5. Study cycle	MASTER
1.6. Study program / qualification	PHYSICS AND TECHNOLOGY OF ADVANCED
	MATERIALS / according to COR: Analyst - 251201;
	Research assistant in physics - 211103; Physicist - 211101;
	Teacher - 233002;

2. Subject matter information

2.1. Subject matter	matter			Optical spectroscopy of advanced materials				
2.2. Subject teacher	r		Assoc. prof. dr. Marius Stef					
2.3. Subject applica (seminar / laborato	ation ry)	s teacher	Assoc. prof. dr. Marius Stef					
2.4. Study year	2	2.5. Semester	3	2.6. type	Assessment	E	2.7. Subject type	Ор. РТАМ2305

3. Study time distribution

3.1. Nr. of hours/week	4	In which: 3.2 c	ourse	2	3.3. seminar/laboratory	2
3.4. Total hours in educational plan	56	In which: 3.5 c	ourse	28	3.6. seminar/laboratory	28
Time distribution:						hours
Study after lecture notes, bibliog	raphy (or notes				22
Additional documentation in the library, electronic specialty platforms/ field					14	
Seminar / laboratory preparations, homework, portfolio and essays					14	
Tutoring						4
Exams						14
Other activities					-	
3.7. Total number of personal study ho	our	68				
3.8. Total number of hours in semester	•	56				

3.9. Number of credits 6

4. Preconditions (where appropriate)

ctroscopiei și laserilor
nului și moleculei
c 1

	Optică
4.2. Competences	•

5. Conditions (where appropiate)

5.3 for course	• laptop
	• projector
5.4 for seminar/lab	• laptop
	• projector
	• experimental set-up

6. Specific skills gained

Professional	• Capacity of analyze and synthesize (adaptability to new situation,
competences	realization of synthesis and comparisons, correlations and propinquity).
	• Basic knowledge (thermodynamics of crystallization)
	• Basic knowledge necessary to profess (presentation, dialog)
	• Knowledge of foreign languages (English)
	• Theoretical understanding (of evolution of basic concepts in physics of
	crystallization)
	• Deep understanding (of basic notions, of physical parameters)
	• Experimental skills (the understanding of experiments)
	• Computational skills (PC uses for research, data acquisition)
	Culture in Physics domain
	Bibliography investigation
	• Learning skills
	• Skills for team working
	• The capacity to transfer the acquired knowledge in practical applications
	• Capacity to plan and organize experimental or theoretical applications
	• Capacity of solving characteristic problems for real physical systems.
	• Capacity of critical assessment and auto assessment.
	Capacity of communication inside a group
Transversal	• Effective use of information sources, communication resources and
competences	training assistance (Internet portals, specialized software, data bases,
	online courses, etc) both in romanian and in a foreign language
	(english).

7. Course Objectives

7.1 Main Objective	• OG: Students to identify the specific concepts and phenomena ia a given context and to apply these knowledge in the analysis and
	interpretation of experimental data.
7.2 Specific objectives	O.c1: Students to define the specific notions of this discipline and to

describe	the	phenomena
O.ap2: Students to	o use correct laborato	ry equipment to perform
measurements.		
O.ap3: Students to p	process experimental da	ta using software packages
and correctly	interpret the	experimental results.
O.ap5: Students to c	levelop their organization	onal capacity
O.at6: Students	to develop their	spirit of teamwork.
O.at7: Students to	appreciate and cultivat	e a scientific environment
based on values and	quality	

8. Table of content

8.1. Course	Teaching methods		Remarks, details
1. Introduction optical spectroscopy. (2	Exposure,		The lecture will be interactive,
hr.)	introductory		conducting learning being
2. Crystal growth methods (4h)	conversation,	heuristic	facilitated by engaging students in
3. Study of absorption spectra of	conversation,	illustration	conversation episodes - to catching the attention for undefing of some
Erbium-doped fluorite crystals (2 hr.)	using	analogies	the attention, for updating of some
4. Emission spectra of Erbium doped			knowledge acquired at university
fluorite crystals (2 hr.)			fixing the new knowledge (OG and
5. Judd-Ofelt theory. Applications for			Traing the new Knowledge (OO and O_{c1})
the Er^{3+} ion doped CaF_2 crystals (4 hr.)			0.01).
6. Judd-Ofelt theory. Applications for			Students will develop their ability
the Er^{3+} ion doped BaF_2 crystals (4 hr.)			in of analysis and synthesis
7. Study of the optical properties of the			in or unarysis and synthesis,
Yb ³⁺ doped CaF ₂ crystals (2 hr.)			Students will use correctly the the
8. Study of the charge conversion of			terminology in physics in writing
rare-earth ions doped crystals (4 hr.)			and oral communication
9. Medical applications of optical			
spectroscopy (2 hr.)			Students will become familiar with
10 Medical applications of lasers (2			a scientific environment based on
hr.)			values and quality (O.at7)

Recomanded literature

1. J.G. Sole, L.E. Bausa, D. Jaque, "An introduction to the optical spectroscopy of inorganic solids", John Wiley&Sons Ltd., England 2005;

2. N.V. Tkachenko, "Optical spectroscopy. Methods and Instrumentation", Elsevier, Amsterdam, Boston 2006;

3. Peter F. Bernath, "Spectra of Atoms and Molecules", Oxford University Press, 1995;

4. Demtroder W., "Laser Spectroscopy. Basic Concept and Instrumentation", Springer, Berlin, 1988

5. Josesph R. Lakowicz, "Principles of Fluorescence Spectroscopy", Springer, 2006.

6. O. Svelto, D.C. Hanna, "Principles of Lasers", Plenum Press, New-York, 1989

|--|

1. Labor protection. Optical	Demonstrative	Students will form / practice /
spectroscopy instruments (2 hr)	experiments in order to	develop:
2. Crystal growth methods (2 hr)	illustrate the phenomena	• Ability to handle the laboratory
3. Symmetry elements and operations.	or processes, verification	equipment in order to perform
(2 hr)	of laws and assumptions.	measurements, to process data and
4. Recording, processing and analysis	It will call on analogies	to analyse the experimental results
of the UV-VIS absorption spectra of	and algorithms.	(O.ap2).
some advanced materials (4 hr)		• teamwork spirit (O.at6).
5. Recording, processing and analysis		• Ability to organize and to
of the IR absorption spectra of some		investigate (O.ap5).
advanced materials (4 hr)		
6. UV-VIS emission and excitation		Students will use appropriate
spectra of some advanced materials. (4		statistical and numerical methods
hr)		for analysis of physical processes
7. Multi-peaks fit methods of optical		(O.ap3). Experimental data and
spectra decomposition. (4 hr)		graphs will be done using Excel,
8. Gaussian muli-peak fit for		Origin and MathCad.
identifying emission characteristic		
bands (4 hr)		
9. Recovery lab. (2h)		
· · · · · ·		

9. Relation between subject content and the expectations of employers

•

10. Assesment

Activity	10.1 Assesment criteria	10.2 Assessment method	10.3 Percent in final mark	
10.4 Course will take place face-to- face	answers at exams (final assessment)	oral	50%	
10.5. Seminar/labs will take place face to	answers at laboratory activities	oral	25%	
face	tests along the laboratories	oral	25%	
10.6 Minimum performance standards				
correct formulation of the proposed subject without demonstrations				

MINISTERUL EDUCAȚIEI ȘI CERCETĂRII FACULTATEA DE FIZICĂ

Completion date:	Subject teacher's signature:	Subject applications teacher's signature:
September, 15 th 2022	Assoc. prof. dr. Marius STEF	Assoc. prof. dr. Marius STEF

Department Director' Signature: Assoc. prof. dr. Catalin Marin