DI.104.HEP Data analysis in high energy physics: a practical guide to statistical methods I

1. Study program

University of Bucharest
Faculty of Physics
Department of Theoretical Physics, Mathematics, Optics, Plasma
and Lasers
Physics
Master of Science
High Energy Physics (in English)
Full-time study

2. Course unit

DS
DI

¹⁾ fundamental (DF), specialized (DS); complementary (DC)
 ²⁾ compulsory (DI), elective (DO), noncompulsory disciplines (DFC)

3. Total estimated time (hours/semester)

3.1. Hours per week in curriculum	4	distribution: Lecture	2	Practicals/Tutorials	2
3.2. Total hours per semester	56	Lecture	28	Practicals/Tutorials	28
Distribution of estimated time for stu	ıdy			•	hours
3.2.1. Learning by using one's own course notes, manuals, lecture notes, bibliography					20
3.2.2. Research in library, study of electronic resources, field research					20
3.2.3. Preparation for practicals/tutorials/projects/reports/homeworks				52	
3.2.4. Preparation for exam				4	
3.2.5. Other activities				0	
3.3. Total hours of individual study	96				
3.4. Total hours per semester	150				
3.5. ECTS	6				

4. Prerequisites (if necessary)

4.1. curriculum	Algebra, Programming languages
4.2. competences	Knowledge about: algebra, quantum mechanics, electrodynamics

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Video projector			

5.2. for practicals/tutorials	

6. Specific competences acquired

Professional	• Identify and proper use of the main physical laws and principles in a given context: the use
competences	of the concepts of the standard model
	Solving problems of physics under given conditions
	• Use of the physical principles and laws for solving theoretical or practical problems with
	qualified tutoring
	• Rigorous knowledge of quantum field theory, concepts, notions and problems in the area
	of theoretical particle physics and their interactions
	• Ability to use this knowledge in interpretation of experimental result and understand
	experiments at CERN; acquire the appropriate understanding of studied fundamental
	mechanisms
Transversal	Efficient use of sources of information and communication resources and training
competences	assistance in a foreign language
_	• Efficient and responsible implementation of professional tasks, with observance of the
	laws, ethics and deontology.

7. Course objectives

7. Course objectives	
7.1 General objectives	To expose the fundamental principles behind the analysis of observed data in particle physics experiments, and how to constrain theory models with observations via frequentist inference.
7.2 Specific objectives	The fundamental notions in the theories of probability and statistics are presented and exercised. They provide the formal ground to motivate common techniques used to measure quantities of interest and assign uncertainties, to model binned or unbinned data with parametric fits in one or several dimensions, or to quantify the compatibility between empirical distributions or parametric models. The construction of likelihood functions and their widespread usage to interpret results of particle physics experiments is detailed and practised. The concrete steps involved in a typical LHC analysis are presented, including the construction of signal and control regions and of meaningful observables, various background estimation techniques, and the different types of uncertainty sources.

8. Contents

o. Contents		
8.1. Lecture [chapters]	Teaching techniques	Observations/ hours
Elementary probability theory: formal basis; central theorems; common probability distributions;		4 hours
Elementary theory of statistics: formal basis; estimation theory; hypothesis testing;		4 hours
Regression; least squares; parametric fits		2 hours
Likelihood inference		2 hours
Confidence intervals; coverage probability	Systematic exposition - lecture. Examples.	2 hours
Analysis concepts: basic workflows for searches, measurements, calibrations; construction of observables for relativistic bodies; background estimation; practical sources of uncertainty; visualization techniques		10 hours
Multivariate classification overview		2 hours
Bayesian statistics		2 hours

Bibliography:

1. O. Behnke et al, Data analysis in high energy physics: A practical guide to statistical methods, Wiley-VCH. 2013.

2. K. Hanagaki et al, Experimental Techniques in Modern High-Energy Physics, Springer Tokyo, 2021.

3. G. Cowan, *Probability* and *Statistics*. In *The Review of Particle Physics*, edited by S. Navas et al., Phys. Rev. D 110, 030001 (2024).

8.2. Tutorials [main themes]	Teaching and learning techniques	Observations/hours
Problems in probability theory	-	4 hours
Problems in theory of statistics		4 hours
Relativistic calculations with several bodies; interpretation of Dalitz plots		6 hours
Measuring efficiencies; binomial errors and beyond		2 hours
Reinterpretation of published LHC BSM search results; exclusion limits setting	Problem solving	4 hours
Construction of likelihood-based estimators for various scenarios		2 hours
Construction of observables highlighting spin correlations and quantum entanglement effects in pp collisions		2 hours
Review of important HEP measurements		4 hours
Ribliography:		

Bibliography:

1. J. D. Jackson et al, Kinematics. In The Review of Particle Physics, edited by S. Navas et al, Phys. Rev. D 110, 030001 (2024).

2. D. H. Perkins, Introduction to High Energy Physics, 4th ed, Cambridge University Press, 2000.

3. E. Maguire et al, HEPData: a repository for high energy physics data, J. Phys. Conf. Ser. 898 (2017) 10, 102006.

4. ATLAS and CMS Collaborations: Eur. Phys. J. C 80 (2020) 8, 754; Phys. Rev. D 110 (2024) 11, 112016; Nature 633 (2024) 8030, 542-547

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

This course unit develops some theoretical competences, which are fundamental for a Master student in the field of modern physics, corresponding to national and international standards. The contents is in line with the requirement of the main employers of research institutes and universities.

10. Assessment

Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight in final mark
10.4. Lecture	 coherence and clarity of exposition correct use of equations/mathematical methods/physical models and theories ability to indicate/analyse specific examples 	Oral examination	40%
10.5.1.	- ability to use specific problem	Homeworks/Lab reports	60%

Tutorials/Practicals	solving methods		
	- ability to analyse the results		
10.6. Minimal requirement	nts for passing the exam		
	for the lectures and at least 70% for th		
	cated subjects for obtaining the grade	5 (10 points scale) from all activiti	es, part of the
continuous evaluation.			
Correct solutions to the indi	cated subjects for obtaining the grade	5 (10 points scale) within the final	exam.
Date	Teacher's name and signature	Practicals/Tutorials instructor(c)
3.10.2024	reacher's name and signature	name(s) and signature(s)	5)
	Dr. Julien Maurer,	name(s) and signature(s)	
	Conf.Dr. Radu Slobodeanu	Dr. Julien Maurer,	
		Conf.Dr. Radu Slobodeanu	Ω
		Head of Department	
		Lect.dr. Roxana Zus	
Date of approval	·)		1
	·	\bigcirc	
		6	