DO.109.1.HEP Computational approaches in high-energy physics

1. Study program	
1.1. University	"Alexandru Ioan Cuza" University of Iasi, University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Department of Theoretical Physics, Mathematics, Optics, Plasma
	and Lasers (Bucharest), Department of Physics (Iasi)
1.4. Field of study	Physics
1.5. Course of study	Master of Science
1.6. Study program	High Energy Physics (in English)
1.7. Study mode	Full-time study

2. Course unit

2.1. Course unit	title	Computational approaches in high-energy physics							
2.2. Teacher			Catalin Agheorghiesei, Petronel Postolache,						
2.3. Tutorials/Practicals instructor(s) Catalin Agheorghiesei, Petronel Postolache,			olache,						
2.4. Year of		2.5.		2.6	5. Type of		2.7. Type	Content ¹⁾	DS
study	II	Semester	2	eva	aluation	E	of course		
							unit		
								Type ²⁾	DF
1) a d									ac

¹⁾ fundamental (DF), specialized (DS); complementary (DC)
 ²⁾ compulsory (DI), elective (DO), noncompulsory disciplines (DFC)

3. Total estimated time (hours/semester)

3.1. Hours per week in curriculum	4	distribution: Lecture	2	Practicals/Tutorials	2
3.2. Total hours per semester	56	Lecture	28	Practicals/Tutorials	28
Distribution of estimated time for stu	ıdy				hours
3.2.1. Learning by using one's own course notes, manuals, lecture notes, bibliography					
3.2.2. Research in library, study of electronic resources, field research					40
3.2.3. Preparation for practicals/tutor	ials/pro	ojects/reports/homewo	orks		32
3.2.4. Preparation for exam					4
3.2.5. Other activities					0
3.3. Total hours of individual study	96				
3.4. Total hours per semester	150				

4. Prerequisites (if necessary)

3.5. ECTS

4.1. curriculum	Algebra, Analysis, Quantum mechanics, Standard Model
4.2. competences	Knowledge about: mechanics, solving differential equations, Standard Model

6

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Video projector
5.2. for practicals/tutorials	

6. Specific competences acquired

Professional competences	 understanding the dynamics of nuclear systems and elementary particles with realistic numerical methods; developing abilities to apply appropriate numerical methods for modelling physical systems ability to analyze and interpret relevant numerical results and to formulate rigorous conclusions
Transversal competences	 Efficient use of sources of information and communication resources and training assistance in a foreign language Efficient and responsible implementation of professional tasks, with observance of the laws, ethics and deontology.

7. Course objectives

7. Course objectives		
7.1. General objective	Describing and understanding of the structure of the nuclear and	
	subnuclear systems based on numerical investigations;	
7.2. Specific objectives	Development of the skill to apply mathematical models for	
	modelling various physical processes	
	Acquire the appropriate understanding of the connections between	
	computational methods and physics	

8. Contents

8.1. Lecture [chapters]	Teaching techniques	Observations/ hours
Short review of UNIX, C++, ROOT,		
Combining languages,		
Cross section and branching ratio calculations,		
Event generators,		
Detector simulations,	Systematic exposition -	28 hours
Reconstruction,	lecture. Examples	
Fast simulation,		
Grid computing,		
Machine Learning		

Bibliography:

- 1. K. Langanke, J.A. Maruhn, S.E. Koonin, Computational Nuclear Physics, vol 1 and 2, Springer Verlag, 1991
- 2. R. K. Ellis, W. J. Stirling, and B. R. Webber, QCD and collider physics, Cambridge University Press, 2003

9.2 Trade state (based)	Translation and the surface	
8.2. Tutorials/ Practicals [main themes]	Teaching and learning	Observations/hours
	techniques	

Numerical applications for each topic of the lecture: Short review of UNIX, C++, ROOT Combining languages, Cross section and branching ratio calculations, Event generators, Detecto simulations, Reconstruction, Fast simulation, Grid computing, Machine Learning.	Problem solving	28 hours
---	-----------------	----------

Bibliography:

- 1. T. Sjostrand, S. Mrenna, and P. Z. Skands, Comput. Phys. Commun. 178, 852 (2008), arXiv:0710.3820
- 2. PYTHIA http://home.thep.lu.se/~torbjorn/Pythia.html
- 3. ROOT http://root.cern.ch

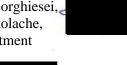
9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

This course unit develops some theoretical competences, which are fundamental for a Master student in the field of modern physics, corresponding to national and international standards. The contents is in line with the requirement of the main employers of research institutes and universities.

10. Assessment

Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight in
			final mark
10.4. Lecture	 Clarity and coherence of exposition Correct use of the methods/ physical models The ability to give specific examples 	Written test and oral examination	40%
10.5.1. Tutorials	- Ability to use specific problem solving methods	Homeworks/ Lab reports	60%
10.6. Minimal require	ments for passing the exam		
Requirements for mar At least 50% of exam se			

Teacher's name and signature


Date 10.10.2024

Catalin Agheorghiesei, Petronel Postolache, Practicals/Tutorials instructor(s) name(s) and signature(s)

Catalin Agheorghiesei, Petronel Postolache, Head of Department

Date of approval

Hea

