DO.110.2 HEP Data Acquisition Methods in HEP I

1. Study program	
1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Department of Theoretical Physics, Mathematics, Optics, Plasma
	and Lasers
1.4. Field of study	Physics
1.5. Course of study	Master of Science
1.6. Study program	High Energy Physics (in English)
1.7. Study mode	Full-time study

1. Study program

2. Course unit

2.1. Course unit title Data Acquisition Methods in HEP II					
2.2. Teacher		Dr. Gabriel Stoicea, Dr. Dorel Pietreanu			
2.3. Tutorials instructor	·(s)				
2.4. Practicals instructor(s)		Dr. Gabriel Stoicea	a, Dr. Dorel Pietrea	anu, Dr. Mihai M	arciu
2.5 Year of	2.6. 2.7	7. Type of	2.8. Type of	Content ¹⁾	DS
study	Semester ² ev	aluation	course unit	Type ²⁾	DO

¹⁾ fundamental (DF), specialized (DS); complementary (DC)
 ²⁾ compulsory (DI), elective (DO), noncompulsory disciplines (DFC)

3. Total estimated time (hours/semester)

3.1. Hours per week in curriculum	4	distribution: Lecture	2	Practicals/Tutorials	2
3.2. Total hours per semester	56	distribution: Lecture	28	Practicals/Tutorials	28
Distribution of estimated time for stu	dy	I		I	hours
3.2.1. Learning by using one's own course notes, manuals, lecture notes, bibliography				44	
3.2.2. Research in library, study of el	ectron	ic resources, field resea	arch		18
3.2.3. Preparation for practicals/tutorials/projects/reports/homeworks				28	
3.2.4. Exams				4	
3.2.5. Other activities				0	
3.3. Total hours of individual study	00				•

90
150
6

4. Prerequisites (if necessary)

4.1. curriculum	Equations of mathematical physics, Electricity, Atomic physics, Nuclear physics, Optics, Quantum physics, Statistical physics
4.2. competences	Physical data processing and numerical methods

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Classroom (preferably, but not required, multimedia facilities)
5.2. for practicals/tutorials	Desktops

6. Specific competences acquired

of Speemie compe	s specific competences acquirea				
Professional	• Identification and proper use of the main laws and principles of physics in a given context;				
competences	identification and use of notions				
	Solving physics problems under imposed conditions				
	• Creatively applying the knowledge acquired in order to understand and model the				
	processes and physical properties				
	• Communication and analysis of information of a didactic, scientific and popular character				
	in the field of physics				
	• Use / development of specific software tools				
Transversal	• Efficient use of information sources and resources for communication and training,				
competences	including in a language of international circulation				
	• Carrying out professional tasks in an efficient and responsible manner, in compliance with				
	the legislation, ethics and deontology specific to the field.				

7. Course objectives

7.1. General objective	Introduction in the Data Acquisition Modern Techniques Familiarization with classic data acquisition systems
7.2. Specific objectives	Being able to build and understand a classic data acquisition hardware system.

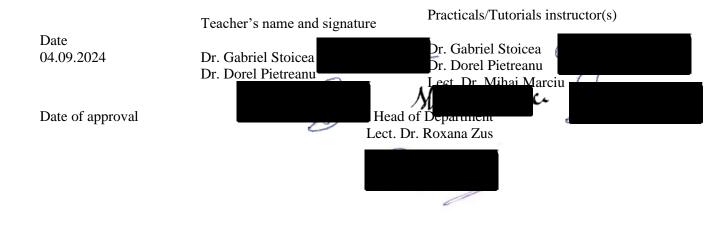
8. Contents

8.1. Lecture [chapters]	Teaching techniques	Observations
1) Objectives of Data Acquisition (DAQ) Systems Data Collection; Signal Processing; Event Selection; Data Storage; Real-Time Monitoring	Systematic presentation - lecture. Examples	6 hours
2) Components of a DAQ System: Front-End Electronics; Trigger System; Readout System; Data Concentrators; Data Storage; Control and Monitoring	Systematic presentation - lecture. Examples	8 hours
3) Key DAQ Methods Triggered DAQ; Triggerless DAQ; Synchronous vs. Asynchronous DAQ.	Systematic presentation - lecture. Examples	4 hours
4) Data Processing TechniquesDigitization; Compression; Noise Filtering; DataFormatting	Systematic presentation - lecture. Examples	6 hours
5) Data Transmission: High-speed communication protocols; Examples	Systematic presentation - lecture. Examples	2 hours
 6) Real-Time Data Monitoring and Data Control System (DCS) Detector and DAQ performance; Interfaces for data visualization; 	Systematic presentation - lecture. Examples	2 hours
Bibliography:		

- 1. W.R. Leo Techniques for Nuclear and Particle Physics Experiments: A How-To Approach; Springer-Verlag, 1994. ISBN: 978-3540572800
- 2. John C. D. Milton and V. S. Ramachandran Modern Instrumentation for Scientists and Engineers; Springer, 1986. ISBN: 978-0387963792
- 3. Stan Gibilisco Data Acquisition and Signal Processing for Smart Sensors; McGraw-Hill Education, 2003. ISBN: 978-0071399535
- 4. Wolfgang Riegler and Dieter Schlatter Particle Detectors; Oxford University Press, 2023. ISBN: 978-0198785154
- 5. C. Grupen, B. A. Swartz, Particle Detectors, Cambridge University Press 2008

6. Particle Data Group, <u>http://pdg.lbl.gov</u>		
8.2. Tutorials [main themes]	Teaching and learning techniques	Observations
8.3. Practicals [practical activities, projects, etc.]	Teaching and learning techniques	Observations
1. Introduction to DAQ Hardware for Particle Physics.		4 h
2. Building a data acquisition chain for a dedicated detector.	Guided work	12 h
3. Implementing a complete DAQ logic using different software frameworks.		12 h
Bibliography:		
Îndrumar de laborator – format electronic		

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)


This course unit develops some theoretical competences, which are fundamental for a Master student in the field of modern physics, corresponding to national and international standards. The contents is in line with the requirement of the main employers of research institutes and universities.

10. Assessment

Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight in final mark		
10.4. Lecture	 coherence and clarity of exposition correct use of equations/mathematical methods/physical models and theories ability to indicate/analyse specific examples 	Oral examination	70%		
10.5.1. Tutorials					
10.5.2. Practicals	 ability to use specific problem solving methods ability to analyse the results ability to present and discuss the results 	Reports	30%		
10.5.3. Project [only if					
included in syllabus]					
10.6. Minimal requirements for passing the exam					
Correct understanding of the concepts and phenomena, the ability to work with them and obtain accurate					
numerical results on topics imposed.					
Requirements for mark 5 (10 points scale)					

• Carrying out all the activities during the semester

• Obtaining note 5 by summing the points obtained at the activities during the course and examination, according to the weights specified

