SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babeş-Bolyai University
institution	
1.2 Faculty	Faculty of Physics
1.3 Department	Department of Physics – Hungarian Line of Study
1.4 Field of study	Physics
1.5 Study cycle	Master
1.6 Study programme / Qualification	Computational physics / High Energy Physics

2. Information regarding the discipline

2.1 Name of the	dis	F	Methods of Stochastic Simulations in Statistical Physics. Interdisciplinary Applications / Monte Carlo Simulations in particle physics					
2.2 Course coor	2 Course coordinator Néda Zoltán							
2.3 Seminar coordinator				ázár Zsolt				
2.4. Year of	1	2.5	2	2.6. Type of	Е	2.7 Type of	DF	
study		Semester		evaluation		discipline		

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	5	Of which: 3.2 course	3	3.3	2	
				seminar/laboratory		
3.4 Total hours in the curriculum	70	Of which: 3.5 course	42	3.6	28	
				seminar/laboratory		
Time allotment:						
Learning using manual, course support, bibliography, course notes						
Additional documentation (in libraries, on electronic platforms, field documentation)						
Preparation for seminars/labs, homework, papers, portfolios and essays						
Tutorship						
Evaluations					3	
Other activities:						

3.7 Total individual study hours	84
3.8 Total hours per semester	154
3.9 Number of ECTS credits	6

4. Prerequisites (if necessary)

4.1. curriculum	
-	Statistical physics, C programming, elements of probability theory and mathematical statistics, logical thinking, interdisciplinary thinking, communication abilities in English, active participation at the courses and laboratories

5. Conditions (if necessary)

5.1. for the course	Video projector, blackboard
5.2. for the seminar /lab	Computers with Linux operating system, Video projector
activities	

6. Specific competencies acquired

- C1. Capacities for analyzing and synthetizing physical data, capacities for modelling complex phenomena.
- C2. Working and mastering with software packages for analyzing and processing experimental data. Using C, Python and Mathematica software for modelling complex phenomena. Capacities for using information technologies in describing complex phenomena from physics, biology, chemistry and social sciences. Advanced programming techniques.
- C3. Trans- and Interdisciplinary thinking.
- C4. Planning and Performing computer experiments for validating physical models. Abilities for making high performance computations in physics. Capacities for writing computer codes and running them on modern supercomputers.
- C5. Communicating efficiently modern scientific ideas. Presenting in a professional manner results of a research or scientific projects. Capacities for writing scientific publications, to interact and have a scientific debate with Editors and Referees. Capacities for arguing and defending scientific views and ideas.

Transversal competences

Specific competences

- CT1. To deal with professional duties efficiently and in a responsible manner, keeping in mind the laws and scientific ethics. Being responsible for the published scientific results and taking all actions for their proper use.
- CT2. Working in an Interdisciplinary environment respecting the professional hierarchy. Having initiative, new ideas and approaches to classical problems. Promoting the dialogue, cooperation and positive attitude in a group. Respecting multicultural environment and helping the others.
- CT3. Efficient use of information technology tools and presentation methods in English. Learning and applying auto evaluation methods, f or keeping the professional training up to date, in agreement with the demands of the market.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 A rigorous introduction in MC simulation methods, oriented on interdisciplinary applications.
7.2 Specific objective of the discipline	 Mastering stochastic simulation methods and physical modelling. Learning to approach modern problems in an interdisciplinary manner. Using classical models of physics in approaching interdisciplinary problems. Advance programming in C and C++. An introduction to scientific research.

8. Content

8.1 Course	Teaching methods	Remarks
Computer simulation techniques – an overview	Problem formulation	
Examples of MC simulations	Presentation	
Random number generators	Demonstartations	
Elements of Statistical Physics, Stochastic Processes and	Software packages	
Critical Phenomena	Discutions	
Brownian dynamics	Movies	
Monte Carlo		
The Ising model		
Metropolis and Glauber MC for the Ising		
The BKL or kinetic MC		
Cluster MC		
The histogram MC method and the microcanonical MC		
method		
Quantum Monte Carlo methods		
MC simulation of Frustrated Systems		
Interdisciplinary application of the MC methods		
	<u> </u>	

Bibliography

1. Z. Neda: Stochastic simulations in physics with interdisciplinary applications,

http://www.phys.ubbcluj.ro/~zneda/edu/mc.htm

- 2. Z. Ned: Stochasztikus szimulacios modszerek a fizikaban (Erdelyi Tankonyvtanacs, 1998), accesibil in numar mare la biblioteca Facultății de Fizică
- 3. H. Gould and J. Tobochnik Introduction to Computer Simulation Methods and applications in physics (Addison Wesley, 1996).
- 4. A. MacKinnon: Computational Physics online course

http://b.sst.ph.ic.ac.uk/~angus/Lectures/compphys/compphys.html

- 5. F. Bagnoli: Introduction to Cellular Automata (cond-mat/9810012; arxiv.org, 1998)
- 6. David Landau and Kurt Binder: A guide to Monte Carlo Simulations in Statistical Physics, Cambridge Univ. Press, 2004

8.2 Laboratory	Teaching methods	Remarks
Organization aspects. The C programming language,	Explanations	
some basic facts. Linux operational system, some basic	Presentations	
facts	Discussions	
Research projects. Scientific papers that will be		
discussed. Computational study of the random walk.	Problem formulation	
Programming the projects and presentations. Computational study of phase transition in a	Individual work	
two-state interacting systems.	Programming	
Working of pseudo-random number generators. Testing the pseudo-random number generators.	riogramming	
Generating random numbers with nonuniform distribution. Discussing novel scientific works related to Monte Carlo methods.		
Studying the Brownian dynamics. Studying stohastic resonance with molecular dynamics. Discussing novel scientific works related to Monte Carlo methods.		
The Monte Carlo integration with direct and importance sampling. Calculating the number PI with MC methods. Individual discussions with the students on their chosen research projects.		
Computational study of the 2D and 3D Ising model. Discussing novel scientific works related to Monte Carlo methods. Individual discussions with the students on their chosen research projects.		
Finite-size effects in the MC studies of the Ising model. Discussing novel scientific works related to Monte Carlo methods. Individual discussions with the students on their chosen research project.		
Simulating the Potts model with q states at low temperatures (the BKL Monte Carlo method). Simulationg the dynamics of atoms deposited on surfaces. Discussing novel scientific works related to Monte Carlo methods. Individual discussions with the		
students on their chosen research project.		
Studying 2D and 3D Ising models with the Swendsen and Wang and Wolf dynamics. Discussing novel scientific works related to Monte Carlo methods. Individual discussions with the students on their chosen research project.		
Studying 2D and 3D Ising problems with the histogram MC method. The microcanonical MC method. Discussing novel scientific works related to Monte Carlo methods. Individual discussions with the students on		
their chosen research project.		
Presentation of individual research projects.		
References		

Z. Neda: Stochastic simulations in physics with interdisciplinary applications, http://www.phys.ubbcluj.ro/~zneda/edu/mc.htm

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

The syllabus and the studied material agree with similar courses from other universities in Romania and abroad. For helping the integration with the demands of the work-force market, the syllabus was harmonized with the demands of the pre-university and university educations, of those of research institutes and the business sector.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
	Knowledge, understanding and capacity of application of the thought material	Exam	55%
10.5 Seminar/lab activities	Homework, lab activity	Continuous evaluation	25%
	Realization degree and presentation of the research project	Oral presentation	20%

10.6 Minimum performance standards

Understanding the methods presented at the course and laboratory.

Addressing the laboratory requirements in proportion of at least 75%.

Successful Developing a project of medium complexity.

Date Signature of course coordinator Signature of laboratory coordinator 04.05.2023 prof. dr. Zoltán Néda lect. dr. Zolt/Iosif Lázár

Date of approval Signature of the head of department

11.05.2023 conf. dr. Ferenc Járai-Szabó