DO.203.1.HEP Frontiers in Particle Physics

1. Study program

Babeş-Bolyai University	
Faculty of Physics	
Department of Physics – Hungarian Line of Study	
Physics	
Master of Science	
High Energy Physics (in English)	
Full-time study	

2. Course unit

2.1. Course unit titl	e Fr	Frontiers in Particle Physics							
2.2. Teacher					Prof. Dr. Néda,	Zoltán			
2.3. Tutorials/Pract	icals in	structor(s)			Prof. Dr. Néda,	Zoltán			
2.4. Year of	m	2.5.	2	2.6	. Type of	Е	2.7. Type of	Content ¹⁾	DS
study	11	Semester	2		aluation	E	course unit		
								Type ²⁾	DO
			1			1			

3. Total estimated time (hours/semester)

3.2. Total hours per semester 56 Lecture 28 Practicals/Tutorials 28 Distribution of estimated time for study 3.2.1. Learning by using one's own course notes, manuals, lecture notes, bibliography 3.2.2. Research in library, study of electronic resources, field research 3.2.3. Preparation for practicals/tutorials/projects/reports/homeworks 32			
3.2.1. Learning by using one's own course notes, manuals, lecture notes, bibliography 3.2.2. Research in library, study of electronic resources, field research 40			
3.2.2. Research in library, study of electronic resources, field research 40			
3.2.3. Preparation for practicals/tutorials/projects/reports/homeworks			
3.2.3. Preparation for practicals/tutorials/projects/reports/homeworks			
3.2.4. Preparation for exam			
3.2.5. Other activities 0			

3.3. Total hours of individual study	96
3.4. Total hours per semester	150
3.5. ECTS	6

4. Prerequisites (if necessary)

4.1. curriculum	Courses in quantum mechanics, special relativity, and classical mechanics. Introduction
	to particle physics, basic cosmology, and experimental techniques in physics.
	Familiarity with mathematical methods in physics, including linear algebra and
	calculus.
4.2. competences	Basic understanding of quantum mechanics, special relativity, and the standard model
	of particle physics. Familiarity with experimental techniques, including detectors and
	data analysis, and concepts from cosmology. Ability to apply physics principles to
	solve theoretical problems.

5. Conditions/Infrastructure (if necessary)

¹⁾ fundamental (DF), specialized (DS); complementary (DC)
2) compulsory (DI), elective (DO), noncompulsory disciplines (DFC)

5.1. for lecture	Video projector, black/whiteboard
5.2. for practicals/tutorials	black/whiteboard

6. Specific competences acquired

o. Specific compe	ichecs acquired
Professional competences	 Identify and properly use the main principles of particle physics, including symmetries, the quark model, and fundamental interactions. Solve theoretical and experimental problems in particle physics with qualified guidance. Understand the principles and applications of particle accelerators, detectors, and experimental techniques like parity and CP violation tests. Gain rigorous knowledge of neutrino experiments, Higgs boson research, and their connections to cosmology. Apply particle physics concepts to medical and interdisciplinary applications,
Transversal competences	 interpreting experimental results and communicating findings effectively. Efficient use of sources of information and communication resources and training assistance in a foreign language Efficient and responsible implementation of professional tasks, with observance of the laws, ethics and deontology.

7. Course objectives

7.1. General objective	Understanding the experimental and theoretical foundations of particle physics, including the quark model, symmetries, and fundamental interactions. Exploring the connection between particle physics, cosmology, and practical applications like medical technologies.
7.2. Specific objectives	Develop the ability to analyze and interpret experimental results in particle physics, including accelerator and detector data. Understand the role of symmetry breaking and fundamental experiments (e.g., CP, parity) in particle interactions. Gain insights into applications of particle physics in cosmology and medicine.

8. Contents

8.1. Lecture [chapters]	Teaching techniques	Observations/ hours	
Overview	Systematic exposition -	4 hours	
Symmetries and particles	lecture.	4 Hours	
Static quark model	Systematic exposition -	4 hours	
Experimental proof of quark model	lecture. Examples	4 Hours	
Particle accelerators Particle detectors	Systematic exposition -	6 hours	
Event registration	lecture. Examples	o nours	
Basic experiments: parity violation	Systematic exposition -	4 hours	
Basic experiments: CP, CPT, kaons	lecture. Examples	4 nours	
Basics of cosmology	Systematic exposition -		
Neutrino experiments	lecture. Examples	6 hours	
Higgs boson	lecture. Examples		

Medical applications	Systematic exposition - lecture. Examples	2 hours		
Bibliography:	rectare. Examples			
Dezső Horváth and Zoltán Trócsányi: <u>Introduction</u>	to Particle Physics, Cambrid	ge Scholars, 2019		
2. The book in manuscript, University of Debrecen.				
8.2. Tutorials [main themes]	Teaching and learning techniques	Observations/hours		
Discussions, control questions and exercises pertaining to each topic	Problem solving	1 hour/lecture hour		

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

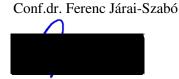
This course unit develops some theoretical competences, which are fundamental for a Master student in the field of modern physics, corresponding to national and international standards. The contents is in line with the requirement of the main employers of research institutes and universities.

10. Assessment

At least 50% of exam score and of homeworks.

Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight in final mark				
10.4. Lecture - Clarity and coherence of Oral examination							
exposition							
- The ability to give specific 60%							
examples							
10.5.1. Tutorials - Ability to carry out quantitative estimates, identify relationships - Oral examination 40%							
10.6. Minimal requirements for passing the exam							
Requirements for mark 5 (10 points scale)							

Date
10.10.2024


Prof. dr. Zoltán Néda

Date of approval

Practicals/Tutorials instructor(s)
name(s) and signature(s)

Prof. dr. Zoltán Néda

Head of Department

