DO.204.3 HEP Data Acquisition Methods in HEP II

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Department of Theoretical Physics, Mathematics, Optics, Plasma
_	and Lasers
1.4. Field of study	Physics
1.5. Course of study	Master of Science
1.6. Study program	High Energy Physics (in English)
1.7. Study mode	Full-time study

2. Course unit

4	Course and								
	2.1. Course unit title	Data Acquisi	tion Meth	ods in HEP II					
	2.2. Teacher			Dr. Gabriel S	toicea,	Dr. Dorel Pietrea	ınu		
	2.3. Tutorials instructor	(s)							
	2.4. Practicals instructor(s) Dr. Gabriel Stoicea, Dr. Dorel Pietreanu, Dr. Mihai Marcin				Iarciu				
	2.5 Year of	2.6.	1 2.7	7. Type of	E	2.8. Type of	Content ¹⁾	DS	
,	study	Semester	ev	aluation	E	course unit	Type ²⁾	DO	

3. Total estimated time (hours/semester)

3.1. Hours per week in curriculum	4	distribution: Lecture	2	Practicals/Tutorials	2
3.2. Total hours per semester	56	distribution: Lecture	28	Practicals/Tutorials	28
Distribution of estimated time for study					hours
3.2.1. Learning by using one's own co	ourse 1	notes, manuals, lecture	notes	, bibliography	44
3.2.2. Research in library, study of ele	ectroni	ic resources, field resea	arch		18
3.2.3. Preparation for practicals/tutorials/projects/reports/homeworks				28	
3.2.4. Exams				4	
3.2.5. Other activities					0

3.3. Total hours of individual study	90
3.4. Total hours per semester	150
3.5. ECTS	6

4. Prerequisites (if necessary)

4.1. curriculum	Equations of mathematical physics, Electricity, Atomic physics, Nuclear physics, Optics, Quantum physics, Statistical physics
4.2. competences	Physical data processing and numerical methods

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Classroom (preferably, but not required, multimedia facilities)
5.2. for practicals/tutorials	Desktops

¹⁾ fundamental (DF), specialized (DS); complementary (DC)
²⁾ compulsory (DI), elective (DO), noncompulsory disciplines (DFC)

6. Specific competences acquired

Professional	• Identification and proper use of the main laws and principles of physics in a given context;
competences	identification and use of notions
	Solving physics problems under imposed conditions
	Creatively applying the knowledge acquired in order to understand and model the
	processes and physical properties
	• Communication and analysis of information of a didactic, scientific and popular character
	in the field of physics
	• Use / development of specific software tools
Transversal	• Efficient use of information sources and resources for communication and training,
competences	including in a language of international circulation
	• Carrying out professional tasks in an efficient and responsible manner, in compliance with
	the legislation, ethics and deontology specific to the field.

7. Course objectives

•	Course objectives					
	7.1. General objective	Learning Hardware Programming				
	7.2. Specific objectives	Implementing a Programmable Logic in a Field Programmable Gate				
		Array (FPGA)				

8. Contents

Teaching techniques	Observations
Systematic presentation -	4 hours
lecture. Examples	4 nours
Systematic presentation -	
_	8 hours
lecture. Examples	
Systematic presentation -	4 hours
lecture. Examples	4 Hours
Systematic presentation -	12 hours
lecture. Examples	12 hours
	Systematic presentation - lecture. Examples Systematic presentation - lecture. Examples Systematic presentation - lecture. Examples Systematic presentation -

Bibliography:

- 1. W.R. Leo Techniques for Nuclear and Particle Physics Experiments: A How-To Approach; Springer-Verlag, 1994. ISBN: 978-3540572800
- 2. John C. D. Milton and V. S. Ramachandran Modern Instrumentation for Scientists and Engineers; Springer, 1986. ISBN: 978-0387963792
- 3. Stan Gibilisco Data Acquisition and Signal Processing for Smart Sensors; McGraw-Hill Education, 2003. ISBN: 978-0071399535
- 4. Wolfgang Riegler and Dieter Schlatter Particle Detectors; Oxford University Press, 2023. ISBN: 978-0198785154
- 5. C. Grupen, B. A. Swartz, Particle Detectors, Cambridge University Press 2008

6. Particle Data Group, http://pdg.lbl.gov

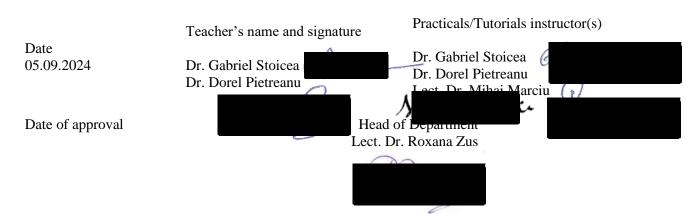
8.2. Tutorials [main themes]	Teaching and learning techniques	Observations
8.3. Practicals [practical activities, projects, etc.]	Teaching and learning techniques	Observations

Introduction to Hardware Programming Languages.	Guided work	14 h
2. Implementation of a Trigger DAQ Algorithm in a Programmable Logic.		14 h
Bibliography: Îndrumar de laborator – format electronic		

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

This course unit develops some theoretical competences, which are fundamental for a Master student in the field of modern physics, corresponding to national and international standards. The contents is in line with the requirement of the main employers of research institutes and universities.

10. Assessment


Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight in final mark
10.4. Lecture	- coherence and clarity of exposition - correct use of equations/mathematical methods/physical models and theories - ability to indicate/analyse specific examples	Oral examination	70%
10.5.1. Tutorials			
10.5.2. Practicals	- ability to use specific problem solving methods- ability to analyse the results- ability to present and discuss the results	Reports	30%
10.5.3. Project [only if included in syllabus]			

10.6. Minimal requirements for passing the exam

Correct understanding of the concepts and phenomena, the ability to work with them and obtain accurate numerical results on topics imposed.

Requirements for mark 5 (10 points scale)

- Carrying out all the activities during the semester
- Obtaining note 5 by summing the points obtained at the activities during the course and examination, according to the weights specified

