## HEP Research practice/ Scientific Research Internship

#### 1. Study program

| 1. Study program     |                                                                    |
|----------------------|--------------------------------------------------------------------|
| 1.1. University      | University of Bucharest, "Alexandru Ioan Cuza" University of Iași, |
|                      | "Babeş-Bolyai" University of Cluj-Napoca, West University of       |
|                      | Timișoara                                                          |
| 1.2. Faculty         | Faculty of Physics                                                 |
| 1.3. Department      | Department of Theoretical Physics, Mathematics, Optics, Plasma     |
| _                    | and Lasers                                                         |
| 1.4. Field of study  | Physics                                                            |
| 1.5. Course of study | Master of Science                                                  |
| 1.6. Study program   | Theoretical and Computational Physics (in English)                 |
| 1.7. Study mode      | Full-time study                                                    |

#### 2. Course unit

| 2.1. Course title Research prac |         | ctice    |                                                      |       |         |   |           |                       |    |
|---------------------------------|---------|----------|------------------------------------------------------|-------|---------|---|-----------|-----------------------|----|
| 2.2. Teacher                    |         |          | Călin Alexa, Paul Grăvilă, Zsolt Lazăr, Daniel Radu, |       |         |   |           |                       |    |
|                                 |         |          | Roxana Zus                                           |       |         |   |           |                       |    |
| 2.3. Tutorials instructor(s)    |         |          |                                                      |       |         |   |           |                       |    |
| 2.4. Practicals instr           | ructor( | (s)      |                                                      |       |         |   |           |                       |    |
| 2.5. Year of                    |         | 2.6.     | 2                                                    | 2.7.7 | Type of |   | 2.8. Type | Content <sup>1)</sup> | DS |
| study                           | 1,2     | Semester | -                                                    | evalı | uation  | V | of course | Type <sup>2)</sup>    | DI |
|                                 |         |          | 4                                                    |       |         |   | unit      | 1990                  | DI |

<sup>1)</sup> fundamental (DF), specialized (DS); complementary (DC)
 <sup>2)</sup> compulsory (DI), elective (DO), noncompulsory disciplines (DFC)

## **3. Total estimated time** (hours/semester)

| 3.1. Hours per week in curriculum                                                     | 4  | distribution:<br>Lecture |  | Practicals/Tutorials |       |
|---------------------------------------------------------------------------------------|----|--------------------------|--|----------------------|-------|
| 3.2. Total hours per semester                                                         | 56 | Lecture                  |  | Practicals/Tutorials |       |
| Distribution of estimated time for stu-                                               | dy |                          |  |                      | hours |
| 3.2.1. Learning by using one's own course notes, manuals, lecture notes, bibliography |    |                          |  | 2                    |       |
| 3.2.2. Research in library, study of electronic resources, field research             |    |                          |  | 2                    |       |
| 3.2.3. Preparation for practicals/tutorials/projects/reports/homeworks                |    |                          |  | 11                   |       |
| 3.2.4. Preparation for exam                                                           |    |                          |  | 4                    |       |
| 3.2.5. Other activities                                                               |    |                          |  |                      | 0     |
| 3.3. Total hours of individual study                                                  | 15 |                          |  |                      |       |
| 3.4. Total hours per semester                                                         | 75 |                          |  |                      |       |
| 3.5. ECTS                                                                             | 3  | ]                        |  |                      |       |

### **4. Prerequisites** (if necessary)

| (if necessary)   |   |  |
|------------------|---|--|
| 4.1. curriculum  | - |  |
| 4.2. competences | - |  |
|                  |   |  |

## 5. Conditions/Infrastructure (if necessary)

| 5.1. for lecture              | -                               |
|-------------------------------|---------------------------------|
| 5.2. for practicals/tutorials | Scientific computing laboratory |

#### 6. Specific competences acquired

| Professional | Apply scientific methods, Manage research data               |
|--------------|--------------------------------------------------------------|
| competences  | Gather experimental data                                     |
|              | Analyse experimental laboratory data                         |
|              | Demonstrate disciplinary expertise                           |
|              | Prepare work reports                                         |
|              | Think abstractly                                             |
|              | Perform scientific research                                  |
|              | Promote open innovation in research                          |
|              | Develop professional network with researchers and scientists |
| Transversal  | Work in teams                                                |
| competences  | Apply knowledge of scientific, technological and engineering |

## 7. Course objectives

| 7.1. General objective   | Understanding theoretically and computationally the models which      |
|--------------------------|-----------------------------------------------------------------------|
|                          | describe real physical systems                                        |
| 7.2. Specific objectives | Detailed study of some physical systems of utmost scientific interest |
|                          | Understanding how these systems are modelled                          |
|                          | Forming a creative and autonomous way of thinking                     |

#### 8. Contents

| Teaching techniques                 | Observations/ hours                                                                                 |
|-------------------------------------|-----------------------------------------------------------------------------------------------------|
|                                     |                                                                                                     |
| Teaching and learning<br>techniques | Observations/hours                                                                                  |
|                                     |                                                                                                     |
| Teaching and learning<br>techniques | Observations                                                                                        |
|                                     |                                                                                                     |
| Teaching and learning techniques    | Observations                                                                                        |
|                                     |                                                                                                     |
|                                     | Teaching and learning<br>techniques<br>Teaching and learning<br>techniques<br>Teaching and learning |

| <ul> <li>Data acquisition methods</li> <li>Statistical methods for data analysis</li> </ul> |
|---------------------------------------------------------------------------------------------|
| - Problems of software development                                                          |
| In addition to the extended list of research topics of                                      |
| the centers of the faculty, students have available                                         |
| projects that they can carry out within the                                                 |
| collaboration agreements that the faculty has with                                          |
| research institutes (for example: Horia Hulubei                                             |
| National Institute for Physics and Nuclear                                                  |
| Engineering, The National Institute for Science                                             |
| Materials, National Institute for Research and                                              |
| Development of Isotopic and Molecular                                                       |
| Technologies INCDTIM Cluj-Napoca etc.).                                                     |
|                                                                                             |

#### Bibliography - sample:

- 1. F. Halzen, A. Martin, Quarks and Leptons, An Introductory course in modern particle physics, John Wiley & Sons Inc., 1984
- 2. W. N. Cottingham and D. A. Greenwood, An introduction to the Standard Model of particle physics, Combridge University Press, 2007
- Kazunori Hanagaki, Junichi Tanaka, Makoto Tomoto, Yuji Yamazaki, Experimental Techniques in Modern High-Energy Physics - A Beginner's Guide, Lecture Notes in Physics, Springer, 2022 <u>https://library.oapen.org/bitstream/handle/20.500.12657/61321/978-4-431-56931-2.pdf?sequence=1&isAllowed=y</u>
- 4. Delphes a C++ framework, performing a fast multipurpose detector response simulation. https://cp3.irmp.ucl.ac.be/projects/delphes
- 5. PYTHIA 8, https://pythia.org/manuals/pythia8312/Welcome.html
- 6. MadGraph5\_aMC@NLO, http://madgraph.phys.ucl.ac.be/
- 7. HEPForge, https://www.hepforge.org/
- 8. ATLAS: Detector and physics performance technical design report.

TDR Volume 1 https://inspirehep.net/files/5057d1bc3edb9ef5d654888a22e6f7e5

TDR Volume 2 https://inspirehep.net/files/315b42523bf67133e14db36eb9946109

# 9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

The content of the research topics allows the students to develop skills and abilities for modeling and/or experimental investigation of the various physical phenomena studied in laboratories/research centers and their applications, in order to integrate them in specific activities of research institutes in the field of high energy physics, as well as in education.

#### 10. Assessment

| Activity type     | 10.1. Assessment criteria           | 10.2. Assessment methods | 10.3.<br>Weight in<br>final mark |
|-------------------|-------------------------------------|--------------------------|----------------------------------|
| 10.4. Lecture     |                                     |                          |                                  |
|                   |                                     |                          |                                  |
| 10.5.1. Tutorials |                                     |                          |                                  |
| 10.5.2 Laboratory |                                     |                          |                                  |
| 10.5.3 Project    | - Attendance                        | Colloquium               | 100%                             |
|                   | - Clarity, coherence and brevity of |                          |                                  |
|                   | the exposure of the acquired        |                          |                                  |

|                                                                | knowledge and the results<br>obtained<br>- The correct use of models,<br>formulas and relations of<br>calculation;<br>- Correctly applying specific<br>methods of solving for the given<br>problem and interpreting the<br>numerical results; |  |  |
|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 10.6. Minimal requirement                                      | its for passing the exam                                                                                                                                                                                                                      |  |  |
| <b>Requirements for mark 5</b>                                 | Requirements for mark 5 (10 points scale)                                                                                                                                                                                                     |  |  |
| Attendance at the practical activities and final presentation. |                                                                                                                                                                                                                                               |  |  |

Date 10.06.2024 Course coordinator name(s) and signature(s)

Călin Alexa, Paul Grăvilă, Zsolt Lazăr, Daniel Radu, Roxana Zus

Head of Department Lect.dr. Roxana Zus



Date of approval