DFC.210.HEP Introduction to VHDL

1. Study program

1.1. University	University of Bucharest, West University of Timișoara,
1.2. Faculty	Faculty of Physics
1.3. Department	Department of Electricity, Solid State Physics and Biophysics
_	(Bucharest)
1.4. Field of study	Physics
1.5. Course of study	Master of Science
1.6. Study program	High Energy Physics (in English)
1.7. Study mode	Full-time study

2. Course unit

2. Course unit									
2.1. Course unit title Introduction to the standard model of elementary particles									
2.2. Teacher Prof.Dr. Lucian Ion									
2.3. Tutorials/Practicals instructor(s) Prof. Dr. Lucian Ion			Ion						
2.4. Year of		2.5.			6. Type of		2.7. Type	Content ¹⁾	DC
study	II	Semester	1	ev	aluation	V	of course		
							unit		
								Type ²⁾	DFC

3. Total estimated time (hours/semester)

3.1. Hours per week in curriculum	4	distribution: Lecture	2	Practicals/Tutorials	2
3.2. Total hours per semester	56	Lecture	28	Practicals/Tutorials	28
Distribution of estimated time for study					hours
3.2.1. Learning by using one's own course notes, manuals, lecture notes, bibliography					15
3.2.2. Research in library, study of electronic resources, field research					10
3.2.3. Preparation for practicals/tutorials/projects/reports/homeworks					15
3.2.4. Preparation for exam					4
3.2.5. Other activities				0	

3.3. Total hours of individual study	44
3.4. Total hours per semester	100
3.5. ECTS	4

4. Prerequisites (if necessary)

4.1. curriculum	-
4.2. competences	Knowledge about: computer programming

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Video projector
5.2. for practicals/tutorials	computing lab

¹⁾ fundamental (DF), specialized (DS); complementary (DC)
2) compulsory (DI), elective (DO), noncompulsory disciplines (DFC)

6. Specific competences acquired

Professional	Proper use of the concepts and methods of modeling of digital systems		
competences	• Solving problems under given conditions		
	• Ability to use this knowledge in interpretation of experimental results and understand		
	experiments		
Transversal	Efficient use of sources of information and communication resources and training assis-		
competences	tance in a foreign language		
	• Efficient and responsible implementation of professional tasks, with observance of the		
	laws, ethics and deontology.		

7. Course objectives

7.1. General objective	Understanding the foundations of modeling of digital systems using VHDL
7.2. Specific objectives	Acquire the skills to develop VHDL programs

8. Contents

8.1. Lecture [chapters]	Teaching techniques	Observations/ hours	
VHDL - fundamental concepts	Systematic exposition - lecture. Examples	2 hours (online)	
Lexical elements and syntax	Systematic exposition - lecture. Examples	6 hours (online)	
Basic modeling constructs	Systematic exposition - lecture. Examples	6 hours (online)	
Subprograms. Procedures and procedure parameters. Functions	Systematic exposition - lecture. Examples	4 hours	
Packages and use clauses	Systematic exposition - lecture. Examples	6 hours	
Resolved signals. Parameterizing behavior and structure	Systematic exposition - lecture. Examples	4 hours	

Bibliography:

- 1. O. Gazi, A tutorial introduction to VHDL programming, (Springer, Singapore, 2019).
- $2. \ P.J. \ Ashenden, \ \textit{VHDL Tutorial} \ (https://www.eecs.umich.edu/courses/doing_dsp/handout/vhdl-tutorial.pdf)$

8.2. Lab [main themes]	Teaching and learning techniques	Observations/hours
Development and simulation of VHDL code (using GHDL, GTKWAVE, etc.)	Problem solving	28 hours

Bibliography:

- 1. O. Gazi, A tutorial introduction to VHDL programming, (Springer, Singapore, 2019).
- 2. P.J. Ashenden, VHDL Tutorial (https://www.eecs.umich.edu/courses/doing_dsp/handout/vhdl-tutorial.pdf)

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

This course unit develops some programming competences that are important for a Master student in the field of modern physics, corresponding to national and international standards. The contents is in line with the requirement of the main employers of research institutes and universities.

10. Assessment

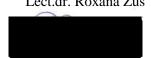
Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight in final mark
10.1. Lecture/Lab	- ability to use specific VHDL programming methods	project/oral examination	
	- ability to analyse the results		100%

10.6. Minimal requirements for passing the exam

Attendance of at least 50% for the lectures and 100% for the lab sessions.

Correct solutions to the indicated subjects for obtaining the grade 5 (10 points scale).

Date 4.10.2024


Date of approval

Teacher's name and signature

Prof.Dr.Lucian Ion

Practicals/Tutorials instructor(s) name(s) and signature(s)

Prof.Dr.Lucia Head of Department Lect.dr. Roxana Zus

