MOTION SIMULATION OF A VIBRATING DEVICE OF CRANK AND CONNECTING-ROD TYPE

NAGY Ramona, CHIRIAC Adrian, BOLTOSI Alexandru, BERETEU Liviu

Abstract
In the paper it is studied the kinematics of a crank and connecting-rod mechanism, making a parallel between the theoretical results and the computer simulation, using the CosmosMOTION included in SolidWORKS software. With this aim, there were traced the diagrams of cinematic parameters of mechanism motion, i.e. the displacement, velocity and acceleration of slide block, as functions of time.

Keywords: cinematic parameter, crank and connecting-rod mechanism, computer simulation.

1. Introduction.

The device of crank and connecting-rod type is considered with the structure in figure 1. It consists of a disk, driven by a motor with different angular velocities (rotation frequencies). The axel O of the disk represents also the axel of the crank OA, so that the crank rotates together with the disk. The connecting-rod AB, articulated in A, assures the rectilinear translation motion of the beam BC.

2. Theoretical Considerations

As it is known, the beam BC executes an oscillatory rectilinear translation motion with the amplitude equal to the length OA of the crank. In the Classical Mechanics a kinematic study of a motion means a pure geometrical study of motion, without taking into consideration any dynamic element as the mass and forces. In the performed simulation, to respect as possible the reality, it was introduced the effect of mass magnitude of mechanism components. So, the kinematic-dynamic values of parameters are as follows:

- Disk mass: $M = 24.31\, g$;
- Total mass of elements OA, OB, OC: \(m = 58.53 \text{ g} \);
- Length of the crank OA: \(e = 25 \text{ mm} \);
- Length of the connecting road OB = 85 mm

3. Experimental Simulation

In figure 2 it is presented the aspect of the simulated system where can be recognized the component elements in figure 1, and in figure 3, the corresponding theoretical model.

The aim of simulation was the obtaining of the kinematic parameters (displacement, velocity, acceleration) for the point C. The simulations were performed corresponding to different values of the angular velocity.

As result of the simulations, there were obtained the following diagrams, corresponding to the working direction of the mechanism, i.e. along the vertical axis (Oz):

![Fig.3. Theoretical model](image)

![Fig.2. Mechanical model](image)

![a. Theoretical](image)

![b. Simulated](image)

Fig.4. Displacement at 10 Hz rotation frequency
Fig. 5. Velocity diagram at 10 Hz rotation frequency

Fig. 6. Acceleration diagram at 10 Hz rotation frequency

Fig. 7. Displacement difference between simulated and theoretical results

Fig. 8. Velocity difference between simulated and theoretical results
4. Conclusions

As conclusions it is remarkable the fact that the performed simulation appears as a high accuracy one, because it emphasizes the parasite displacements, velocities and accelerations on perpendicular directions (Oy and Oz). So, the parasite displacement are, respectively, $y=3.00635 \times 10^{-9} \text{mm}$, $z=2.37392 \times 10^{-11} \text{mm}$, for the last moment of simulation, appeared due to the joint plays.

The explanation of the displacement differences is, as it was mentioned, the considering of masses of elements which generated the apparition of inertia forces.

References

