Publications

https://scholar.google.ro/citations?user=lNnTr_kAAAAJ&hl=en&cstart=20&pagesize=20

1. Heat transfer analysis and structure perfection of shaped semi-transparent crystals
 Journal of Crystal Growth 128 (1993) 152-158
 I.Nicoara, D.Nicoara, D.Vizman

2. Interface Shape Studies of Fluoride and Silicon Rods Grown by the E.F.G. Method
 Crystal Research and Technology 30 (1995) 1085-1093
 I.Nicoara, D.Vizman

3. On the Factors Affecting the Isotherm Shape during Bridgman Growth of Semi-transparent Crystals
 D. Vizman, I. Nicoara, D. Nicoara

4. Thermal stresses in shaped semi-transparent crystals
 I.Nicoara, D. Vizman, D. Nicoara

5. On the solidification particularities of the opaque and semi-transparent crystals
 obtained by Bridgman method
 Crystal Research and Technology 33 (1998) 207-218
 I.Nicoara, Mirela Nicolov, Artur Pusztai, D.Vizman

6. Experimental and Numerical Study of Rayleigh-Benard Convection Affected by a Rotating Magnetic Field
 J.Friedrich, Y.-S. Lee, B.Fischer, C.Kupfer, D.Vizman, G.Mueller

7. 3D Numerical Simulation of Melt Flow in the Presence of a Rotating Magnetic Field
 D.Vizman, J.Friedrich, B.Fischer and G.Mueller

8. Effects of temperature asymmetry and tilting in the vertical Bridgman growth of semi-transparent crystals
 D.Vizman, I.Nicoara and G.Mueller

9. On void engulfment in shaped sapphire crystals using 3D modelling
 I.Nicoara, D.Vizman and J.Friedrich

10. Three-dimensional numerical simulation of thermal convection in an industrial Czochralski melt: comparison to experimental results
 D.Vizman, O.Graebner, G.Mueller
11. Comparison of the predictions from 3D numerical simulation with temperature distributions measured in Si Czochralski melts under the influence of different magnetic fields
D.Vizman, J.Friedrich, G.Mueller

12. 3D numerical simulation and experimental investigations of melt flow in an Si Czochralski melt under the influence of a cusp-magnetic field
D.Vizman, O.Graebner, G.Mueller

13. 3D Numerical simulation of Rayleigh-Benard convection in an electrically conducting melt acted on by a travelling magnetic field
V.Socoliuc, D. Vizman, B. Fischer, J. Friedrich, G. Mueller
Magnetohydrodynamics, 39(2003),2, 187-200

14. Three-dimensional modeling of melt flow and interface shape in the industrial liquid-encapsulated Czochralski growth of GaAs
Vizman D, Eichler S, Friedrich J, Muller G

15. Voids engulfment in shaped sapphire crystals
Nicoara I, Bunoiu OM, Vizman D

16. Numerical modeling of frequency influence on the electromagnetic stirring of semiconductors melts
Crystal Research and Technology 41 (2006), 645-652
C. Stelian, D. Vizman

17. Large modification of crystal-melt interface shape during Si crystal growth by using electromagnetic Czochralski method (EMCZ)
Watanabe M, Vizman D, Friedrich J, Muller G

18. A new hybrid method for the global modeling of convection in CZ crystal growth configurations
J. Fainberg, Vizman D, Friedrich J, Mueller G

19. 3D time-dependent numerical study of the influence of the melt flow on the interface shape in a silicon ingot casting process
Vizman D, Friedrich J, Mueller G

20. Influence of different Types of magnetic fields on the interface shape in a 200mm Si-EMCZ configuration
Journal of Crystal Growth 303 (2007) 221-225
Vizman D, Watanabe M, Friedrich J, Mueller G
21. Numerical study of the influence of different types of magnetic fields on the interface shape in directional solidification of multi-crystalline silicon ingots
Journal of Crystal Growth 318 (2011) 293-297
Tanasie C, Vizman D, Friedrich J

22. Numerical study of the influence of melt convection on the crucible dissolution rate in a silicon directional solidification process,
A. Popescu, Vizman D.

23. Numerical study of the influence of melt convection on the crucible dissolution rate in a silicon directional solidification process.
Crystal Growth and Design, 12 (2012) 320
A. Popescu, Vizman D.

24. Numerical studies on a type of mechanical stirring in directional solidification method of multicrystalline silicon for photovoltaic applications,
Journal of Crystal Growth, 360 (2012) 76-80
Dumitrica S., Vizman D, Garandet J.P.

25. Numerical parameter studies of 3D melt flow and interface shape for directional solidification of silicon in a traveling magnetic field
D. Vizman, K. Dadzis, J. Friedrich

Journal of Crystal Growth, 372 (2013) 1-8
D. Vizman, C. Tanasie

27. Unsteady coupled 3D calculations of melt flow, interface shape, and species transport for directional solidification of silicon in a traveling magnetic field
Journal of Crystal Growth, 367 (2013) 77-87
K. Dadzis, D. Vizman, J. Friedrich

28. Effects of crucible coating on the quality of multicrystalline silicon grown by a Bridgman technique
Journal of Crystal Growth, 401 (2014) 720-726
V. Pupazan, R. Negrila, O. Bunoiu, I. Nicoara, D. Vizman

29. Flow Control by Magnetic Fields during Crystal Growth from Melt,
Book Chapter, Handbook of Crystal Growth: Bulk Crystal Growth, 2014, Pages 909-950, Elsevier
Daniel Vizman

30. Numerical and experimental modeling of melt flow in a directional solidification configuration under the combined influence of electrical current and magnetic field,
Negrila R.A, Popescu A., Vizman D.