

SYLLABUS

1. Information on the study programme

1.1. Higher education institution	West University of Timisoara
1.2. Faculty	Faculty of Physics
1.3. Department	Physics Department
1.4. Study program field	Physics
1.5. Study cycle	Master
1.6. Study programme / Qualification	Astrophysics, elementary particles and computational
	physics / according to COR: physicist (211101); teacher
	(233001); research assistant (248102);

2. Information on the course

2.1. Course title			Solar Resources in Space AP2305				
2.2. Lecture instructor	•		Dr. Robert Blaga				
2.3. Seminar / laborate	ory iı	nstructor	Dr. Robert Blaga				
2.4. Study year	2	2.5. Semester	1 2.6. Examination type V 2.7. Course ty		2.7. Course type	Ob	

3. Estimated study time (number of hours per semester)

3.1. Attendance hours per week	3	out of which: 3.2	2	3.3. seminar /	1
		lecture		laboratory	
3.4. Attendance hours per semester	42	out of which: 3.5	28	3.6. seminar /	14
		lecture		laboratory	
Distribution of the allocated amount of time*					
Study of literature, course handbook and personal notes					
Supplementary documentation at library or using electronic repositories					14
Preparing for laboratories, homework, reports etc.					28
Exams					3
Tutoring					-
Projects					14
3.7. Total number of hours of 87 individual study					

individual study		
3.8. Total number of hours per	129	
semester		
3.9. Number of credits (ECTS)	5	

4. Prerequisites (if it is the case)

4.1. curriculum	Mathematics, Computational physics	
4.2. competences	Elementary knowledge on programming computers	

5. Requirements (if it is the case)

5.1. for the lecture	-
5.2. for the seminar / laboratory	Individual access to computer

6. Specific acquired competences

Professional competences	• Understanding the main themes from solar radiation physics		
	Acquiring knowledge on solar radiation field		
	• Explaining the quantities, concepts and phenomena in the field of		
	solar radiation using terms, notions, theories, models, equations,		
	schemes and graphical representations.		
	• Elaboration of numerical algorithms for estimating the available		
	solar energy in space and the amount of electricity that can be		
	obtained from it by photovoltaic conversion.		
Transversal competences	• Accessing the NASA database, selecting and sorting data		
	• Explaining data meaning using specific statistical methods		
	• Developing the skills to use the R programming environment		

7. Course objectives

7.1. General objective	Understanding photovoltaic conversion of solar energy in the terrestrial and extraterrestrial environment.
7.2. Specific objectives	Developing students' skills to calculate solar energy in the extraterrestrial space, on the Moon and Mars.
	Developing students' skills to size the photovoltaic generators operating in the extraterrestrial space.

8. Content

8.1. Lecture	Teaching methods	Remarks, details
1. Course Introduction.	Interactive lecture	In person
2. The Sun. General	Interactive lecture	In person
parameters of the Sun.		
3. Solar radiation. Solar	Interactive lecture	In person
energy at the top of the		
terrestrial atmosphere		
4. Propagation of solar flux	Interactive lecture	In person
through the atmosphere.		
Atmospheric transmittances		
5. Solar irradiance	Interactive lecture	In person
modelling. Beam		
component.		
6. Solar irradiance	Interactive lecture	In person
modelling. Diffuse		
component.		
7. Solar irradiance	Interactive lecture	In person
modelling. Sources of data.		
8. Solar irradiance in the	Interactive lecture.	In person
extraterrestrial		
environment.		

9. Solar energy at the	Interactive lecture	In person
surface of the Moon and		
Mars.		
10. Photovoltaic cells	Interactive lecture	In person
11. Spectral characteristics	Interactive lecture	In person
of a PV cell.		
12. Modelling the operation	Interactive lecture	In person
of a PV cell in space		
13. Project. Designing a PV	Interactive lecture. Guidance	In person
generator operating on the	Questioning	
Mars surface.		
14. Other ways of valorizing	Interactive lecture.	In person
the solar resource in space.		

Recommended literature

1. Modern celestial mechanics : aspects of solar system dynamics, by Alessandro Morbidelli. London: Taylor & Francis (2002) ISBN 0415279399

2. Seinfeld, J.H. and Pandis, S.N. *Atmospheric chemistry and physics: from air pollution to climate change*. John Wiley & Sons (2016).

3. Friedlander, S.K. Smoke, dust, and haze (Vol. 198). New York: Oxford university press (2000).

4. A. Luque, S. Hegedus. Handbook of photovoltaic science and engineering. John Wiley & Sons (2011).

8.2. Seminar / laboratory	Teaching methods	Remarks, details
1. Solar radiation. Solving problems	Guidance Ouestioning	
2. Estimation the solar energy on the Earth's surface.	Guidance Questioning	
Solving problems	Individual implementation of the numerical algorithms	
3. Estimation of the solar	Guidance	
Solving problems.	Individual implementation of the numerical algorithms	
4. Exploring various	Guidance	
AERONET, various NATA	Individual implementation of the	
sources)	numerical algorithms	
5. Estimation the solar	Guidance	
energy on Mars.	Questioning Individual implementation of the	
	numerical algorithms	
6. Estimating the properties of	Guidance	

a solar cell. Interpreting an I-	Questioning	
V characteristic.	Processing data.	
7. Project. Designing a PV generator operating on the Mars surface.	Guidance Questioning Individual implementation of the numerical algorithms	

Recommended literature

1. A. Luque, S. Hegedus. Handbook of photovoltaic science and engineering. John Wiley & Sons (2011).

2. M. Paulescu. Solar Resources in Space. Lecture notes. http://www.physics.uvt.ro/~marius/res

10. Evaluation

Activity	10.1. Assessment criteria	10.2. Assessment	10.3. Weight in
		methods	the final mark
Lecture	Theoretical knowledge	Continuous assessment	33.3%
Seminar /	Solving problems.	Continuous assessment	33.3 %
laboratory	Projects	End of year	33.3 %
10.6. Minimum needed performance for passing			

The student is able to estimate the available solar energy on the top of the atmosphere and to model a solar cell operating at STC.

Date of completion

Signature (lecture/seminar instructor)

Dr. Robert Blaga

Date of approval

11.09.2023

Signature (director of the department) Conf.univ.dr.habil. C.N. Marin

