

FISA DISCIPLINEI Syllabus

1. Information about the study program

1.1. University	West University of Timisoara		
1.2. Faculty	PHYSICS		
1.3. Department	PHYSICS		
1.4. Study direction	PHYSICS		
1.5. Study cycle	MASTER		
1.6. Study program / qualification	ADVANCED RESEARCH METHOD IN PHYSICS /		
	according to COR: Analyst - 251201; Research assistant in		
	physics - 211103; Physicist - 211101; Teacher - 233002;		

2. 2. Information about the subject/discipline

2.1. Subject matter			Complements of solid-state physics			ics	
2.2. Subject teacher			Pro	Prof. dr. Marius Paulescu			
2.3. Subject applicati	Subject applications teacher (seminar Prof. dr. Marius Paulescu						
/laboratory)							
2.4. Study year	1	2.5. Semester	1	2.6. Type of	Ε	2.7. Subject type	OB
				assessment			

3.3. Total estimated time (hours of teaching per semester)

3.1. Number of hours per week	4	3.2 course	2	3.3. seminar/laboratory	2
3.4. Total hours in the curriculum	56	3.5 course	28	3.6. seminar/laboratory	28
Time distribution:					
Study based on instructions, cour	se mat	terials, bibliography and	d note	S	28
Additional documentation library	, elect	ronic platforms/ field			14
Training seminars / laboratory, homework, portfolio and essays					28
Tutoring					
Examination					6
Other activities					-
3.7. Total number of personal study hour 76					
3.8. Total number of hours in semester 132					

7

3.9. Number of credits

4. 4. Prerequisites (where applicable)

4.1. Curriculum	• Solid state physics; Quantum mechanics; Mathematical analysis		
4.2. Competences	•	Basic knowledge in solid state physics	
	•	Basic knowledge about the numerical methods applied in physics	

5. Conditions (where applicable)

5.3 for course	Computer connected to the internet
5.4 for seminar/lab	• Computer connected to the internet, whiteboard

1. Discipline objectives – learning outcomes

Knowledge	Acquiring knowledge in two chapters of solid state physics: semiconductor physics and crystalline nanostructures physics. Understanding the physical mechanisms that differentiate the properties of the crystalline materials from the properties of the crystalline nanostructures Knowledge about specific models for: energy bands, effective mass, nanostructured heterostructures (superlattice, quantum wires and dots), the binding energy of impurity states, density of states and conductance. Knowledge in using quantum mechanics for studying the nanostructured systemsKnowledge in using numerical methods for solving problems in solid state physics.
Skills	Modelling some physical properties of solids with a focus on semiconductors and nanocrystals. Acquiring skills in solving problems in solid state physics by using mathematical, analytical and numerical tools
Responsibility and autonomy	Carrying out professional tasks efficiently and responsibly under qualified assistance. Teamwork techniques Effective use of information sources, both in Romanian and in an international language. Acquiring a positive and responsible attitude towards one's own professional development

7. Contents

7.1 Course	Teaching methods	Comments
1. Semiconductors: crystals,	Interactive lectures using	Lecture notes available online on E-learning
alloys, heterostructures and	a whiteboard.	Platform
nanostructures		
2. Energy band theory. An	Interactive lectures using	Lecture notes available online on E-learning
elementary introduction to the	a whiteboard.	Platform
energy band modeling		
3. Electrons and holes. Effective	Interactive lectures using	Lecture notes available online on E-learning
mass	a whiteboard.	Platform
4. Position-dependent effective	Interactive lectures using	Lecture notes available online on E-learning
mass Schrodinger equation	a whiteboard.	Platform
5. Numerically solving the	Interactive lectures using	Lecture notes available online on E-learning
Schrodinger equation. The	a whiteboard.	Platform
transfer matrix method		
6. Superlattices	Interactive lectures using	Lecture notes available online on E-learning
	a whiteboard.	Platform
7. Quantum wires	Interactive lectures using	Lecture notes available online on E-learning
	a whiteboard.	Platform

8. Quantum dots. Artificial semiconductors	Interactive lectures using a whiteboard	Lecture notes available online on E-learning Platform
0 Impurities in semiconductors	Interactive lectures using	Lactura notas available online on E learning
9. Impurities in semiconductors	a whiteboard.	Platform
10. Density of states in	Interactive lectures using	Lecture notes available online on E-learning
semiconductors and	a whiteboard.	Platform
nanostructures		
11 Carrier concentration in	Interactive lectures using	Lecture notes available online on E-learning
semiconductors and	a whiteboard	Platform
nanostructuros	a winteboard.	
12 Semiconductor continuity	Internative leatures using	Lacture notes evoilable online on E learning
12. Semiconductor continuity	Interactive fectures using	Declare notes available online on E-learning
equation. An introduction to	a whiteboard.	Platform
numerical modeling of		
semiconductor devices		
13. Conductance quantization.	Interactive lectures using	Lecture notes available online on E-learning
The Landauer formula	a whiteboard.	Platform
14. Quantum conductance.	Interactive lectures using	Lecture notes available online on E-learning
Ohm's law	a whiteboard.	Platform
Seminar		
1. Solving problems	Solving problems and	Seminar support and solved problems are available
	simulations. Guidance.	online on E-learning Platform
2. Calculating the energy band	Solving problems and	Seminar support and solved problems are available
structure. Simplified models.	simulations. Guidance.	online on E-learning Platform
3 Calculating the effective	Solving problems and	Seminar support and solved problems are available
mass of electrons and holes	simulations Guidance	online on E-learning Platform
4 Problem solving: The	Solving problems and	Seminar support and solved problems are available
BenDaniel and Duke boundary	simulations Guidance	online on F-learning Platform
conditions Calculation of the	Questioning	
opergy states	Questioning	
5 Multiple sugartum avalle	Salaring angleland and	
5. Multiple quantum wells.	Solving problems and	Seminar support and solved problems are
Calculation of the energy states	simulations. Guidance.	available online on E-learning Platform
6. Problem solving:	Solving problems and	Seminar support and solved problems are
Superlattice. The Kramers	simulations. Guidance.	available online on E-learning Platform
approach for computing the		
energy states		
7. Problem solving: Quantum	Solving problems and	Seminar support and solved problems are
wires	simulations. Guidance.	available online on E-learning Platform
8. Problem solving: Quantum	Solving problems and	Seminar support and solved problems are
dots	simulations Guidance	available online on E learning Platform
0 Colculating the hinding	Solving problems and	Coming support and solved problems are
7. Calculating the billing	simulations. Cuidence	Seminar support and solved problems are
energy. 2D that wave function.	simulations. Guidance	available online on E-learning Platform
10. Calculating the density of	Solving problems and	Seminar support and solved problems are
states	simulations. Guidance	available online on E-learning Platform
11. Problem solving: Carrier	Solving problems and	Seminar support and solved problems are
concentration in semiconductors	simulations Guidance	** *

and nanostructures		available online on E-learning Platform
12. Numerical modeling of	Solving problems and	Seminar support and solved problems are
optoelectronic sensor. Part 1 -	simulations. Guidance	available online on E-learning Platform
Writing the equations		5
13. Numerical modeling of	Solving problems and	Seminar support and solved problems are
optoelectronic sensor. Part 2 –	simulations. Guidance	available online on E-learning Platform
Solving the equations		
14. Problem solving: Quantum	Solving problems and	Seminar support and solved problems are
conductance	simulations. Guidance	available online on E-learning Platform

Bibliography

- 1. Paulescu M. Complements of solid-state physics. Lectures and seminars http://www.physics.uvt.ro/~marius/
- 2. Harrison P. Quantum wells, wires and dots. Wiley-Interscience, 2006.
- 3. Datta S. Quantum transport Atom to transistor. Cmbridge University Press, 2007.
- 4. Kittel C. Introducere în fizica corpului solid. Ed. Tehnică, București, 1972.
- 5. Tsu R. Superlattice to Nanoelectronics. Elsevier, Amsterdam, 2006
- 6. Durkam C. Current at the nanoscale: An introduction to nanoelectronics, Imperial College Press, 2007.
- 7. Ibach H, Luth H. Solid-State Physics: An Introduction to Principles of Materials Science. Springer, 2009.
- 8. O'Reilly EP. Introduction to quantum theory of solids. Taylor & Francis, 2003.
- 9. G. Bastard, Wave mechanics applied to semiconductor heterostructures, EDP Sciences, Paris, 1992.

8. Corroboration of the course contents with the epistemic expectations of the community representative, professional associations and representative employers of the programme itself

The course Complements of Solid State Physics Complement is a general physics course of which content has the role of standardizing and consolidating students' knowledge in the field of solid state physics. The focus on the physics of nanostructures is of interest for employers both from research and industry.

9. Examination

Activity type	9.1 Evaluation criteria	9.2 Evaluation method	9.3
			Percentage
			in final mark
Course	The basic theoretical knowledge and	Final exam. Written test	60%
	the ability to solve problems will be	consisting of questions and	
	evaluated	problems.	
Seminar	The student solves the problems from	Ongoing test	40%
	the seminar and homework.		
	The student proves knowledge and		
	skills for solving numerically some		
	problems in semiconductor physics		
	(energy bands, effective mass,		
	nanostructured heterostructures		
	(superlattice, quantum wires and		

	dots), the binding energy of impurity states, density of states and conductance)				
10.6 Minimum performan	nce standards				
General knowledge in energy band theory and nanostructures (quantum wells, wires and dots). The student proves the ability to solve problems like the ones studied at seminar.					

The student solves the problems from the seminar and the homework.

Date of submission:

Titular of the course:

Prof. Dr. Marius Paulescu

Date of approval in department:

HEAD OF THE DEPARTMENT

Prof. Dr. Marin Catalin