

FISA DISCIPLINEI Syllabus

1. Information about the program

1.1. University	West University of Timisoara
1.2. Faculty	PHYSICS
1.3. Department	PHYSICS
1.4. Study direction	PHYSICS
1.5. Study cycle	MASTER
1.6. Study program / qualification	METODE AVANSATE DE CERCETARE IN FIZICA/ ADVANCED
	RESEARCH METHODS IN PHYSICS

2. Subject matter information

2.1. Subject matter		Magnetic materials ARMP 1104					
2.2. Subject teacher		Dr. Nicoleta Stefu, Associate Professor					
2.3. Subject applications teacher (seminar / laboratory)		Dr.	Nicoleta Stefu, Associate	e Pro	ofessor		
2.4. Study year	1	2.5. Semester	1	2.6. Assessment type	E	2.7. Subject type	DS, DOP

3. Study time distribution

3.1. Nr. of hours/week	4	In which: 3.2 course	2	3.3. seminar/laboratory	0/2
3.4. Total hours in educational plan	56	In which: 3.5 course	28	3.6. seminar/laboratory	28
Time distribution:					hours
Study after lecture notes, bibliography or notes					60
Additional documentation in the library, electronic specialty platforms/ field					20
Seminar / laboratory preparations, homework, portfolio and essays					30
Tutoring					0
Exams					10
Other activities					-

3.7. Total number of personal study hour	120
3.8. Total number of hours in semester	176
3.9. Number of credits	7

4. Preconditions (where appropriate)

`			
4.1. curriculum	Mathematics - Analysis		
	Electricity and magnetism		
	Differential and integral calculus		
	Physics of the atom		
4.2. Competences	• General competencies: the ability of analysis and synthesis;		

5. Conditions (where appropiate)

5.3 for course	Laptop + projector+ whiteboard
5.4 for seminar/lab	 Devices from the lab of Magnetic Materials PC. Each seminar activity will be done in small groups (3-4 students) on the topics described in the seminar section.

6. Specific skills gained

Professional competences	 C1. Learning of a coherent and functional fundamental knowledge system in material science; C2. Capacity to characterize specific materials properties in relation with their applications; C3. Use of methods for investigation of the structure of materials; C4. Comparison of experimental results with theoretical models.
Transversal competences	T1. Ability to obtain and analyse information through ICT T2. Team work T3. Capacity for communication T4. Reflective thinking
Key competences	K1. Literacy competences K2. Mathematical competences K3. Digital competences K4. Efficient use of informational and communication resources in English language. K5. Learning competences

7. Course Objectives

7.1 Main Objective	OG: To gain knowledge of physical phenomena in magnetic
	materials in magnetic field.

7.2 Specific objectives	O1: To understand the origin of magnetism and the magnetic
	phenomena.
	O2: To put into practice the knowledge gained in characterizing
	magnetic materials
	O3: To develop the capacity for organization and investigation.
	O4: To use mathematic calculation and specific software in order to
	process data.

8. Table of content

8.1 Course – 28 hours	Teaching methods	Observations
Lecture 1. (4 hours) Introductory lecture. Chapter 1. Magnetic materials. Angular momenta; Magnetic Moments • Contributes to OG and O1 • contributes to the formation of professional competences C1 and C2	Lecture, introductory conversation, heuristic conversation, illustration, use of analogies and algorithms.	The lecture will be interactive; learning is facilitated by engaging the students in conversation episodes, capture of attention, updating the knowledge previous acquired and systematization / fixing of new knowledge
contributes to the formation of Key Competences competences K2 and K4		Compulsory reading: Lecture notes 1 available on e-learning platform
		Optional supplementary material: [1] Pages 87-90 [4] pages 62-67
		Video This lecture is part of 8.02 Physics II: Electricity and Magnetism, as taught in Spring 2002 by Dr. Walter Lewin at MIT. https://www.youtube.com/watch?v=TJ GRatHJgEI
Lecture 2 (4 hours)	Lecture, conversation,	
Magnetic Moment and its Energy in a Magnetic Field; Definitions of Magnetization and Magnetic Susceptibility; Classification of	mathematical calculation, fixing and deepening knowledge	Compulsory reading: Lecture notes 2 available on e-learning platform
Magnetic Materials; Diamagnetism; Paramagnetism. The Langevin Function of Magnetization and the Curie Law	Building a mind map	Optional supplementary material: [1] Pages 90-99 [4] pages 104-106
 OG and O1 contributes to the formation of professional 		

competences C1 and C2 contributes to the formation of Key Competences competences K2 and K4 Lecture 3 (4 hours) The Brillouin Function of Magnetization and the Curie Law; Magnetic Ordered State; Weiss molecular field theory (the classical theory); Generalization of Weiss molecular field theory; Magnetism and hysteresis OG and O1 contributes to the formation of professional competences C1 and C2	Lecture, conversation, mathematical calculation, fixing and deepening knowledge	Compulsory reading: Lecture notes 3 available on e-learning platform Optional supplementary material: [1] Pages 117-128 [2] pages 53-59 [4] pages 107-110
contributes to the formation of Key Competences competences K2 and K4		
Lecture 4 (4 hours) The quantum theory of ferromagnetism. The Heitler –London model. The Heisenberg- Dirac hamiltonian. The exchange interaction; Magnetism and hysteresis. Chapter 2. Magnetic anisotropy. Anisotropy OG and O1 contributes to the formation of professional competences C1 and C2 contributes to the formation of Key Competences competences K2 and K4	Lecture, conversation, mathematical calculation, fixing and deepening knowledge	Compulsory reading: Lecture notes 4 available on e-learning platform Optional supplementary material: [1] Pages 197 [2] pages 63-65 [4] pages 168
Lecture 5 (4 hours) Crystallographic anisotropy; Shape anisotropy; Induced anisotropy. Magnetostriction; Other ferromagnetic phenomena (magneto-caloric, magneto- resistance, magneto-optic) OG and O1 contributes to the formation of professional competences C1 and C2 contributes to the formation of Key Competences competences K2 and K4	Lecture, conversation, mathematical calculation, fixing and deepening knowledge	Compulsory reading: Lecture notes 5 available on e-learning platform Optional supplementary material: [1] Pages 198-204 [2] pages 63-65 [4] pages 169-187
Lecture 6 (4 hours) Chapter 3. Magnetization dynamics Larmor precession. Electron paramagnetic resonance; Bloch equations. Magnetic resonance. Magnetic relaxation;	Lecture, conversation, mathematical calculation, fixing and deepening knowledge	Compulsory reading: Lecture notes 6 available on e-learning platform Optional supplementary material:

Ferromagnetic resonance; Antiferromagnetic resonance OG and O1 contributes to the formation of professional competences C1 and C2 contributes to the formation of Key Competences competences K2 and K4		[1] Pages 428-435 [4] pages 305-325
Lecture 7 (4 hours) Chapter 4. Magnetic nanoparticle systems and applications Characteristic length scales; Small particles; Quantum dots and molecular clusters; Bulk nanostructures; Ferrofluids; Magneto-rheological and magneto-elastic systems; Smart materials OG and O1 contributes to the formation of professional competences C1 and C2 contributes to the formation of Key Competences competences K2 and K4	Lecture, conversation, retaining and deepening knowledge conversation	Compulsory reading: Lecture notes 7 available on e-learning platform Optional supplementary material: [3] pages 177-189 [4] pages 264-268, 293-300

Bibliography

- 1. B. D. Cullity, C. D. Graham, Introduction To Magnetic Materials, IEEE Press, Wiley, 2009
- 2. Peter Mohn, Magnetism In The Solid State, An Introduction, Corrected Second Printing, 2006, Springer
- 3. Nicola Spaldin, Magnetic Materials, Fundamentals And Applications, Cambridge University Press, 2011

4. J.M.D. Coey, Magnetism and magnetic materials, Cambridge University Press, 2010.

8.2 Seminar / labs	Teaching methods	Observations/Bibliog
		raphy
Seminar 1. (4 hours) Methods for measuring the magnetic susceptibility • contributes to the formation of professional competences C3 • contributes to the formation of Key Competences competences K1	Discussion on various methods for measuring the magnetic susceptibility and magnetic permeability	Compulsory reading: <i>Laboratory notes</i> available on the elearning platform
Seminar 2. (4 Hours) Determination of the saturation magnetisation and of the dimension of the particles of a ferofluid by means of magnetisation curve. • contributes to the formation of professional	Data processing and interpretation of the results. Students will work in small groups (3-4 students). Will read and discuss the article in bibliography, will be given a set of measurements and will follow the algorithm described	Compulsory bibliography: I. Hrianca, I. Malaescu, C. N. Marin, N. Stefu, Magnetic relaxation processes in radio-
competences C2, C3, C4	in article and do the calculations	frequency field for

• contributes to the formation of Key Competences competences K1, K2, K3, K4

Students will:

- put into practice the knowledge gained in characterizing magnetic materials (O2).
- develop the capacity for organization and investigation. (O3)
- use mathematic calculation and specific software in order to process data (O4).

Students will develop the following transversal competences T1, T2, T3 and T4

presented there, using the appropriate software. In the end they will present their work and the results, discussing the differences between their results and the ones presented in the article.

dispersed monodomenic particles, Analele Uiversitatii de Vest din Timisoara, Vol. XXXVI, Seria Stiinte Fizice (1997) 17

Seminar 3. (4 hours)

Determination of particle dimension by means of Neel and Brown relaxation times in suspensions of magnetic nanoparticles.

- contributes to the formation of professional competences C2, C3, C4
- contributes to the formation of Key Competences competences K1, K2, K3, K4

Students will:

- put into practice the knowledge gained in characterizing magnetic materials (O2).
- develop the capacity for organization and investigation. (O3)
- use mathematic calculation and specific software in order to process data (O4).

Students will develop the following transversal competences T1, T2, T3 and T4

Data processing and interpretation of the results.

Students will work in small groups (3-4 students). Will read and discuss the article in bibliography, will be given a set of measurements and will follow the algorithm described in article and do the calculations presented there, using the appropriate software. In the end they will present their work and the results, discussing the differences between their results and the ones presented in the article.

Compulsory bibliography:

I. Malaescu, L. Gabor, F. Claici, N. Stefu,
"Preparation of ferrofluids with magnetite and mixed ferrite particles and characterization in a radiofrequency field",
Analele Uiversitatii de Vest din Timisoara, Vol. XXXVIII, Seria Stiinte Fizice (1998) 90

Seminar 4. (4 hours)

Determination of the magnetic properties of the ferrofluid from resonance measurements

- contributes to the formation of professional competences C2, C3, C4
- contributes to the formation of Key Competences competences K1, K2, K3, K4

Students will:

• put into practice the knowledge gained in

Data processing and interpretation of the results.

Students will work in small groups (3-4 students). Will read and discuss the article in bibliography, will be given a set of measurements and will follow the algorithm described in article and do the calculations presented there, using the appropriate software. In the end they will present their work and the

Compulsory bibliography:

I. Hrianca, I. Malaescu, N. Stefu, F. Claici, Behavior in Radiofrequency Field and Magnetic Resonance of Ferrofluids, Analele Universitatii de Vest din

characterizing magnetic materials (O2). • develop the capacity for organization and investigation. (O3) • use mathematic calculation and specific software in order to process data (O4). Students will develop the following transversal competences T1, T2, T3 and T4	results, discussing the differences between their results and the ones presented in the article.	Timisoara, Vol. XL, Seria Stiinte Fizice, (1999)
Seminar 5. (4 hours) Determination of anisotropy constant by means of magnetic resonance • contributes to the formation of professional competences C2, C3, C4 • contributes to the formation of Key Competences competences K1, K2, K3, K4 Students will: • put into practice the knowledge gained in characterizing magnetic materials (O2). • develop the capacity for organization and investigation. (O3) • use mathematic calculation and specific software in order to process data (O4). Students will develop the following transversal competences T1, T2, T3 and T4	Data processing and interpretation of the results. Students will work in small groups (3-4 students). Will read and discuss the article in bibliography, will be given a set of measurements and will follow the algorithm described in article and do the calculations presented there, using the appropriate software. In the end they will present their work and the results, discussing the differences between their results and the ones presented in the article.	Compulsory bibliography: P.C.Fannin, C.N.Marin, I. Malaescu, N.Stefu, "An investigation of the microscopic and macroscopic properties of magnetic fluids", Physica B: Condensed Matter, Volume 388, Issues 1-2, Pages 1-440 (15 January 2007) Pages 87-92
Seminar 6 (4 hours) Study of the anisotropy constant and Lande factor by means of static and dynamic measurements in ferrofluids with mixed ferrite particles • contributes to the formation of professional competences C2, C3, C4 • contributes to the formation of Key Competences competences K1, K2, K3, K4 Students will: • put into practice the knowledge gained in characterizing magnetic materials (O2). • develop the capacity for organization and investigation. (O3)	Data processing and interpretation of the results. Students will work in small groups (3-4 students). Will read and discuss the article in bibliography, will be given a set of measurements and will follow the algorithm described in article and do the calculations presented there, using the appropriate software. In the end they will present their work and the results, discussing the differences between their results and the ones presented in the article.	Compulsory bibliography: I. Malaescu, N. Stefu, L. Gabor, Relaxation Process and Ferromagnetic Resonance Investigation of Ferrofluids with Mn – Zn and Mn – Fe Mixed Ferrite Particles, J. Magn. Magn. Mater, 234 (2001) 299-305

• use mathematic calculation and specific software in order to process data (O4).

Students will develop the following transversal competences T1, T2, T3 and T4

Seminar 7. (4 hours)

Determination of the microwave specific loss power of magnetic fluids subjected to a static magnetic field

- contributes to the formation of professional competences C2, C3, C4
- contributes to the formation of Key Competences competences K1, K2, K3, K4

Students will:

- put into practice the knowledge gained in characterizing magnetic materials (O2).
- develop the capacity for organization and investigation. (O3)
- use mathematic calculation and specific software in order to process data (O4).

Students will develop the following transversal competences T1, T2, T3 and T4

Data processing and interpretation of the results.

Students will work in small groups (3-4 students). Will read and discuss the article in bibliography, will be given a set of measurements and will follow the algorithm described in article and do the calculations presented there, using the appropriate software. In the end they will present their work and the results, discussing the differences between their results and the ones presented in the article.

Compulsory bibliography:

P.C.Fannin, I. Malaescu, C.N.Marin, **N.Stefu**, Microwave specific loss power of magnetic fluids subjected to static magnetic field, Eur. Phys. J. E., 27, 145-148 (2008)

Bibliography

- 1. I. Hrianca, I. Malaescu, C. N. Marin, **N. Stefu**, *Magnetic relaxation processes in radio-frequency field for dispersed monodomenic particles*, Analele Uiversitatii de Vest din Timisoara, Vol. XXXVI, Seria Stiinte Fizice (1997) 17
- 2. I. Malaescu, L. Gabor, F. Claici, **N. Stefu**, "Preparation of ferrofluids with magnetite and mixed ferrite particles and characterization in a radiofrequency field", Analele Uiversitatii de Vest din Timisoara, Vol. XXXVIII, Seria Stiinte Fizice (1998) 90
- 3. I. Hrianca, I. Malaescu, **N. Stefu**, F. Claici, *Behavior in Radiofrequency Field and Magnetic Resonance of Ferrofluids*, Analele Universitatii de Vest din Timisoara, Vol. XL, Seria Stiinte Fizice, (1999)
- 4. P.C.Fannin, C.N.Marin, I. Malaescu, **N.Stefu**, "An investigation of the microscopic and macroscopic properties of magnetic fluids", **Physica B: Condensed Matter**, Volume 388, Issues 1-2, Pages 1-440 (15 January 2007) Pages 87-92
- 5. I. Malaescu, N. Stefu, L. Gabor, Relaxation Process and Ferromagnetic Resonance Investigation of Ferrofluids with Mn Zn and Mn Fe Mixed Ferrite Particles, J. Magn. Magn. Mater, 234 (2001) 299-305 P.C.Fannin, I. Malaescu, C.N.Marin, N.Stefu, Microwave specific loss power of magnetic fluids subjected to static magnetic field, Eur. Phys. J. E., 27, 145-148 (2008)

9. Relation between subject content and the expectations of employers

10. Assesment

10.2.4	
10.2 Assesment	10.3 Percent in
method	final mark
Summative assessment Oral examination based on an essay	70%
aluated assessment: - continuous after d and by they uated	30%
	method of the Summative assessment - Oral examination based on an essay on a topic discussed in class, presented in English Formative assessment: - continuous

10.6 Minimum performance standards

Mark 5 corresponds to the minimum accumulated knowledge, i.e. for the student capacity to:

• Correctly answer 3 questions from the theoretical part (in final evaluation), mark 5 in seminar.

Completion date: 09.09.2023

Subject teacher's signature:

Associate Professor Dr. Nicoleta STEFU.

Subject applications teacher's signature:
Associate Professor Dr. Nicoleta STWELL

Department Director' Signature:

Associate Professor Dr. Cătălin Nicolaie Marin