

Subject content

1. Program information

8	
1.1 University	West University of Timisoara
1.2 Faculty	Physics
1.3 Department	Physics
1.4 Study direction	Physics
1.5 Study cycle	Master
1 C Starbarran	METODE AVANSATE DE CERCETARE IN FIZICA/ ADVANCED
1.6 Study program	RESEARCH METHODS IN PHYSICS

2. Subject matter information

2.1 Subject matter			ARMP1205 Transport phenomena				
2.2 Subject teacher			Prof.dr. Daniel Vizman				
2.3 Subject applica	tions te	eacher	Lect.dr. Alexandra Popescu				
2.4 Study year	1	2.5 Semester	2 2.6 Assessment type Ex 2.7 Subject type			Op	

3. Study time distribution

3.1 Nr. of hours/week	4	In which: 3.2 course	2	3.3 seminar/lab	2
3.4 Total hours in educational plan	56	In which: 3.5 curs	28	3.6 seminar/lab	28
Time distribution:					
Study after lecture notes, bibliography or notes					
Additional documentation in the library, electronic specialty platforms/ field					
Seminar / laboratory preparations, homework, portofolio and essays					
Tutoring					
Exams					
Other activities					
3.7 Total number of personal study 119					
hour					
	1				

175
7

4. Preconditions (where appropiate)

4.1 curriculum	•
4.2 skills	•

5. Conditions (where appropiate)

5.1 for course	• Molecular physics; Thermal and statistical physics
5.2 for seminar/lab	•

6. Objectives of the discipline - expected learning outcomes to the formation of which contribute to the completion and promotion of the discipline

Knowledge	 The course study transport phenomena related to the complex method of crystal growth: heat transfer phenomena (conduction, convection and radiation) and mass transport (difusion). The specific objective are: Description of transport phenomena in crystal growth systems Understanding the phase transitions in crystal growth processes Understanding the role of convection and radiation in heat transfer
Abilities	 -Capacity of analising and description of transport phenomena in complex systems -Capacity of building mental models for crystal growth systems by understanding the related physical phenomena. - Capacity of understanding the functional relations in a crystal growth system , which describe how one parameter variation imply other parameter variation or the variation of the whole system. - Interpretation of the causal relations between different parts of the crystal growth systems by analyzing of physical phenomena in these systems.
Responsibility and autonomy	 Skills in research ethics Skills in research project management Team work in a research activity. Efficient use of informational and communication resources in English language.

7. Table of content

7.1 Course	Teaching methods	Observations
1. Introduction. Example of complex phenomena which occur in crystal growth processes.	Exposure. Googlemeet platform	Course support in electronic format, Bibliography[1]
2. Principles of heat transfer by conduction. Differential equation of heat transfer. Boundary conditions	Exposure. Googlemeet platform	Course support in electronic format, Bibliography[1] Platforme : Google Classroom
3. Solving methods: a)Splitting the variables; b)Aproximative analytical methods: integral methods, variational method, Ritz Galerkin method c) numerical methods: finite difference and finite volume	Exposure. Googlemeet platform	Course support in electronic format, Bibliography[1,3] Platforme: Google Classroom

4. Phase transformations: melting and	Exposure. Discussions.	Course support in electronic
solidification. Boundary conditions in movement		format, Bibliography[1,3] Platforme: Google
interfaces.		Classroom
5. Convective heat transfer.	Exposure. Discussions.	Course support in electronic
5. Convective neat transfer.	Exposure. Discussions.	format, Bibliography[1,3,4]
		Platforme: Google
		Classroom
6. Equations of ideal and real fluid flow (Navier-	Exposure. Discussions.	Course support in electronic
1	Exposure. Discussions.	format, Bibliography[1,3]
Stokes).		Platforme: Google
		Classroom
7 Introduction in magnetabudrodynamics	Exposure. Discussions.	Course support in electronic
7. Introduction in magnetohydrodynamics	Exposure. Discussions.	format, Bibliography[4]
		Platforme: Google
		Classroom
8. Equation of heat transfer by convection	Exposure. Discussions.	Course support in electronic
8. Equation of heat transfer by convection	Enposare. Discussions.	format, Bibliography[1,3]
		Platforme: Google
		Classroom
9. Radiative heat transfer. Fundamentals.	Exposure. Discussions.	Course support in electronic
y. Radiative field transfer. I and amentalis.	1	format, Bibliography[2]
10. Mass transfer. Molecular and convective	Exposure. Discussions.	Course support in electronic
diffusion.	•	format, Bibliography[2]
uniusion.		Platforme: Google
		Classroom
11. Numerical methods	Exposure. Discussions.	Course support in electronic
		format, Bibliography[4]
		Platforme: Google
		Classroom
12. Simulation code Crysmas	Exposure. Discussions.	Course support in electronic
		format, Bibliography[1,3]
		Platforme: Google
		Classroom
13. Simulation code STHAMAS	Exposure. Discussions.	Course support in electronic
		format, Bibliography[4]
		Platforme: Google
		Classroom
14. Heat transfer analysis in Bridgman,	Exposure. Discussions.	Course support in electronic
Czochralski and EFG crystal growth methods.		format, Bibliography[4]
		Platforme: Google
ו יווית	<u> </u>	Classroom

Bibliography

- 1. W.Carslaw, R.Jaeger, Heat conduction in solid, Clarendon Press, Oxford (1986)
- 2. M. Necati Ozisik, Radiative Transfer and interaction with conduction and convection, Wiley-Interscience Publication, 1972
- 3. I.Nicoara, Transfer de caldura si substanta in procesele de cristalizare din topitura, Tipografia Univ. de Vest Timisoara, 1996
- 4. Daniel Vizman, PhD thesis, 1996
- 5. R. Moreau, Magnetohydrodynamics, Kluwer Academic Publischers, London, 1990
- 6. Crysmas, user manual

7.2 Seminar / labs	Teaching methods	Observations
1. Introduction. Presentation of differential	Dialogue, Googlemeet	
eqautions for transport phenomena.	platform	

Adresă poștală: Bd. Vasile Pârvan nr. 4, cod poștal 300223, Timișoara, jud. Timiș, România Număr de telefon: +40-(0)256-592.300 (310)

Adresă de e-mail: <u>secretariat@e-uvt.ro</u>

	D'1 C 1	
2. Applications at the heat transfer by	Dialogue, Googlemeet	
conduction: solving practical problems with	platform	
Diriclet boundary conditions.		
3. Applications at the heat transfer by	Dialogue, Googlemeet	
conduction: solving practical problems with	platform	Students will gain skills to
convective boundary conditions.		solve complex problems of
4. Applications at the heat transfer by conduction:	Dialogue, Googlemeet	heat transfer with
solving practical problems with radiative boundary	platform	practical applications,
conditions.		Bibliography [1,2] Platforme : Google
5. Solving heat conduction equation by splitting the	Dialogue, Googlemeet	Classroom
variables method	platform	
6. Solving heat conduction equation by splitting	Dialogue, Googlemeet	
the aproximative methods	platform	
7. General overview on Crysvun software.	Interactive method using	The students will learn
	modelling software	practically to use a
8. Applications at the heat transfer simulation in	Interactive method using	modelling software for
a Czochralski process	modelling software	modelling crystal growth equipment and related
9. Applications at the heat transfer simulation in	Interactive method using	physical phenomena.
a Bridgman process	modelling software	Parjonear priorioritana
10. Applications to the phase transitions	Interactive method using	Bibliography [3,4]
	modelling software	Platforme: Google
		Classroom

Bibliography

- 1. W.Carslaw, R.Jaeger, Heat conduction in solid, Clarendon Press, Oxford (1986)
- 2. I.Nicoara, Transfer de caldura si substanta in procesele de cristalizare din topitura, Tipografia Univ. de Vest Timisoara, 1996
- 3. Crysmas, user manual
- 4. D. Vizman, B. Faina, Modelarea fenomenelor de transport, Indrumator de laborator, Editura Universitatii de Vest, 2008, Timisoara

8. Relation between subject content and the expectations of employers

Transport phenomena gives work skills in almost all domains in which the future graduate can work. Mainly related with crystal growth processes, metalurgy, etc.

9. Assesment

Activity type 9.1 Assessment criteria		9.2 Assesment	9.3 Percent in final			
			mark			
9.4 Course The assimilation level of knowl gained		Oral examination	60%			
9.5 Seminar /	Capacity of solving specific problem	Written test	40%			
labs						
9.6 Minimum performance standards						
1. Correct recognition of physical parameters in differential equations of transport phenomena.						
2. Statement of possible boundary conditions.						

- 3. Explanation of the difference between heat transport by conduction, convection and radiation.
- 4. Explanation of the difference between difusive and convective regimes of mass transport.

Data completării

15.01.2024

Semnătura titularului de curs Prof.dr. Daniel Vizman

Semnătura directorului de departament