

### **SYLLABUS**

#### 1. Information about the study programme

| 1.1 Institution of higher education | West University of Timișoara         |
|-------------------------------------|--------------------------------------|
| 1.2 Faculty                         | Physics                              |
| 1.3 Department of                   | Physics                              |
| 1.4 Field of study                  | Physics                              |
| 1.5 Study cycle                     | Master degree                        |
| 1.6 Study programme / Qualification | ADVANCED RESEARCH METHODS IN PHYSICS |

#### 2. Information about the subject/discipline

| 2.1 Name                |                                                             |              | Micr | Microwaves and applications in materials science ARPM1208 |      |             |            |
|-------------------------|-------------------------------------------------------------|--------------|------|-----------------------------------------------------------|------|-------------|------------|
| 2.2 Course coordin      | 2 Course coordinator Prof. Dr. habil. Cătălin Nicolae MARIN |              |      |                                                           |      |             |            |
| 2.3 Seminar coordinator |                                                             |              | Prof | Prof. Dr. habil. Cătălin Nicolae MARIN                    |      |             |            |
| 2.4 Year of study       | 1                                                           | 2.5 Semester | 2    | 2.6 Type of                                               | Exam | 2.7 Type of | Compulsory |
|                         |                                                             |              |      | assessment                                                |      | discipline  |            |

#### 3. Total estimated time (hours of teaching per semester)

| 3.1 Number of hours per week                                               | 4       | 3.2 course            | 2     | 3.3 seminars/labs | 2     |
|----------------------------------------------------------------------------|---------|-----------------------|-------|-------------------|-------|
| 3.4 Total hours in the curriculum                                          | 56      | 3.5 course            | 28    | 3.6 seminars/labs | 28    |
| Distribution of time:                                                      |         |                       |       |                   | hours |
| Study based on Instructions, course                                        | materia | als, bibliography and | notes | 5                 | 28    |
| Additional documentation library, specialized electronic platforms / field |         |                       |       | 10                |       |
| Training seminars / laboratories, homework, essays, portfolios and essays  |         |                       |       | 21                |       |
| Tutoring                                                                   |         |                       |       |                   | 5     |
| Examinations                                                               |         |                       |       |                   | 5     |
| Other activities                                                           |         |                       |       |                   |       |
| 2.7 Total have after dividual study                                        | 60      |                       |       |                   |       |

| 5.7 Total nours of mulvidual study | 09  |
|------------------------------------|-----|
| 3.8 Total hours per semester       | 125 |
| 3.9 Number of credits              | 5   |

#### 4. Prerequisites (where applicable)

| 4.1 of curriculum | Knowledge of electricity, magnetism and classical electrodynamics,<br>elementary notions of mathematical analysis and algebra, as well as<br>knowledge of using a computer to process experimental data. |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4.2 of skills     | Ability of abstraction and analyse physical phenomena.<br>Minimum technical skills for carrying out electromagnetism and<br>electromagnetic wave experiments.                                            |



| 5. Conditions (where applicable  | e)                                                                                                                                                                                                                                                                                                    |
|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5.1 for the course               | The courses are interactive (students are encouraged to ask<br>questions and formulate discussion topics from the course<br>theme). To consolidate knowledge, students receive<br>homework projects or can take tests, and the results<br>throughout the semester are quantified for the final grade. |
| 5.2 for the seminar / laboratory | The course material is discussed, then practical activities are carried out in working groups, under the supervision and guidance of the teaching staff.                                                                                                                                              |

# 5. Conditions (where applicable)

#### 6. Discipline objectives – learning outcomes

| -                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Knowledge                      | <ul> <li>Knowledge and acquisition of the laws of physics for the description of the basic phenomena in electromagnetism, the physical quantities that intervene as well as the laws that govern the presented phenomena.</li> <li>Knowing and learning the electrical and magnetic properties of materials and their manifestation in the microwave electromagnetic field.</li> <li>Knowledge in the description of microwave propagation phenomena on guiding structures and in material environments.</li> <li>Knowledge and acquisition of some practical applications of microwaves.</li> </ul>                                                                                                                                        |
| Skills                         | <ul> <li>Skills training for performing laboratory measurements, making circuits, real-time measurements, acquisitions and computer data processing.</li> <li>Identification and appropriate use of the main laws of electromagnetism related to microwaves in a given context.</li> <li>Use of software packages for data analysis and processing.</li> <li>Solving physics problems under imposed conditions, using numerical methods.</li> <li>Application of knowledge in the field of microwaves both in concrete situations from related fields and in experiments, using standard laboratory equipment.</li> <li>Communication and analysis of didactic, scientific and popularizing information in the field of physics.</li> </ul> |
| Responsibility<br>and autonomy | <ul> <li>Developing the capacity for initiative and choice.</li> <li>Encouraging the exploration of physical phenomena.</li> <li>Promoting student responsibility in dealing with learning subjects through the effective use of information sources and communication resources.</li> <li>Cultivating fairness and responsibility in the activity carried out.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                  |

#### 7. Contents

| 7.1 Course                             | Teaching methods         | Comments |
|----------------------------------------|--------------------------|----------|
| 1. Microwave frequencies and uses.     | Exposure. Conversations. | 2 hours  |
| Microwave circuit elements analysis.   |                          |          |
| Maxwell's equations                    |                          |          |
| 2. Electromagnetic characterization of | Exposure. Conversations. | 2 hours  |
| the propagation medium. Study of       |                          |          |
| plane wave propagation. Propagation    |                          |          |



| parameters for the plane wave. The      |                          |         |
|-----------------------------------------|--------------------------|---------|
| study of the reflection and             |                          |         |
| transmission of the electromagnetic     |                          |         |
| wave at the separation surface          |                          |         |
| between two propagation media           |                          |         |
| 3. Wave equation and membrane           | Exposure. Conversations. | 2 hours |
| equation. Propagation modes             |                          |         |
| 4. Transmission lines – definitions.    | Exposure. Conversations. | 2 hours |
| Equations of transmission lines in      |                          |         |
| permanent harmonic regime.              |                          |         |
| Propagation constant. General           |                          |         |
| solutions of transmission line          |                          |         |
| equations                               |                          |         |
| 5. Characteristic impedance. The        | Exposure. Conversations. | 2 hours |
| solutions of the transmission line      |                          |         |
| equations terminated on a given load.   |                          |         |
| Input impedance                         |                          |         |
| 6. The equivalent quadrupole of the     | Exposure. Conversations. | 2 hours |
| transmission line. Wave propagation     |                          |         |
| through finite transmission line. Smith |                          |         |
| chart for transmission lines. Impedance |                          |         |
| matching with reactive elements         |                          |         |
| 7. Uniform waveguides - definitions,    | Exposure. Conversations. | 2 hours |
| classification. Rectangular waveguide.  |                          |         |
| Propagation parameters in the           |                          |         |
| rectangular waveguide. Circular         |                          |         |
| waveguides                              |                          |         |
| 8. Elementary notions of the theory of  | Exposure. Conversations. | 2 hours |
| linear microwave circuits. Impedance    |                          |         |
| description of waveguides elements      |                          |         |
| and circuits. Foster's reactance        |                          |         |
| theorem. Even and odd properties of     |                          |         |
| input impedance. N-ports circuits.      |                          |         |
| 9. Scattering matrix formulation –      | Exposure. Conversations. | 2 hours |
| properties and determination.           |                          |         |
| Scattering matrix of two-port junction. |                          |         |
| Transmission matrix representation      |                          |         |
| 10. Excitation of waveguides. Waveguide | Exposure. Conversations. | 2 hours |
| coupling and apertures. Transmission-   |                          |         |
| line resonant circuits. Electromagnetic |                          |         |
| resonators.                             |                          |         |
| 11. Resonant cavity - definition and    | Exposure. Conversations. | 2 hours |
| characterization. The study of the H10  |                          |         |
| wave in the parallelepiped resonant     |                          |         |



| cavity by the reflection method. The<br>fundamental parameters of the<br>resonant cavity. Resonance curve of<br>the cavity. Application of the<br>perturbation method to the resonant<br>cavity. Application - determination of<br>dielectric parameters using the<br>perturbation method |                          |         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------|
| 12. Microstrip technology of transmission<br>lines in microwave integrated circuits.<br>Couplers and power dividers made in<br>microstrip technology. Filters built in<br>microstrip technology. Microstrip<br>antennas                                                                   | Exposure. Conversations. | 2 hours |
| 13. Heating of materials in microwave field. Microwave absorbers and shielding                                                                                                                                                                                                            | Exposure. Conversations. | 2 hours |
| 14. Microwaves in telecommunications.<br>Radiotelescopes. Microwave security<br>and control equipment. Continuous<br>flow microwave pasteurization.<br>Medical applications of microwaves                                                                                                 | Exposure. Conversations. | 2 hours |

Bibliography:

- > I. Mălăescu, Microunde și tehnologii cu microunde, Editura Universității de Vest, Timișoara, 2008
- J. D. Jackson, Electrodinamica clasică vol.1 și vol.2, Editura tehnică, București, 1991
- G. Rulea, Bazele teoretice și experimentale ale tehnicii microundelor, Editura Științifică și Enciclopedică, București, 1989
- R. E. Collin, Foundations for Microwave Engineering, Mc-Graw-Hill, London, 1966

| 7.2. Se | eminar / laboratory                   | Teaching methods                        | Comments |
|---------|---------------------------------------|-----------------------------------------|----------|
| 1.      | Study of the electromagnetic          | Presentation of the practical work.     | 2 hours  |
|         | spectrum in the 1 MHz – 1 GHz range   | Performing the experiment, processing   |          |
|         | and electromagnetic jamming           | the experimental data, interpreting the |          |
|         |                                       | results and reporting them.             |          |
| 2.      | Study of the propagation of           | Presentation of the practical work.     | 2 hours  |
|         | electromagnetic waves on the bifilar  | Performing the experiment, processing   |          |
|         | transmission line                     | the experimental data, interpreting the |          |
|         |                                       | results and reporting them.             |          |
| 3.      | Study of coaxial line input impedance | Presentation of the practical work.     | 2 hours  |
|         | (effect of frequency and line length) | Performing the experiment, processing   |          |
|         |                                       | the experimental data, interpreting the |          |
|         |                                       | results and reporting them.             |          |



| 4. | The effect of the static magnetic field | Presentation of the practical work.     | 2 hours |
|----|-----------------------------------------|-----------------------------------------|---------|
|    | on the input impedance of a coaxial     | Performing the experiment, processing   |         |
|    | line                                    | the experimental data, interpreting the |         |
|    |                                         | results and reporting them.             |         |
| 5. | Measurement of the frequency            | Presentation of the practical work.     | 2 hours |
|    | dependence of the magnetic              | Performing the experiment, processing   |         |
|    | permeability of materials by the short- | the experimental data, interpreting the |         |
|    | circuited coaxial line method           | results and reporting them.             |         |
| 6. | Measurement of the frequency            | Presentation of the practical work.     | 2 hours |
|    | dependence of the complex dielectric    | Performing the experiment, processing   |         |
|    | permittivity by the hollow coaxial line | the experimental data, interpreting the |         |
|    | method                                  | results and reporting them.             |         |
| 7. | Measuring the electromagnetic           | Presentation of the practical work.     | 2 hours |
|    | shielding effectiveness of materials    | Performing the experiment, processing   |         |
|    | according to ASTM D4935_10              | the experimental data, interpreting the |         |
|    |                                         | results and reporting them.             |         |
| 8. | Frequency dependence of                 | Presentation of the practical work.     | 2 hours |
|    | electromagnetic wave propagation        | Performing the experiment, processing   |         |
|    | parameters                              | the experimental data, interpreting the |         |
|    |                                         | results and reporting them.             |         |
| 9. | Determination of the Neel relaxation    | Presentation of the practical work.     | 2 hours |
|    | time in nanostructured materials        | Performing the experiment, processing   |         |
|    |                                         | the experimental data, interpreting the |         |
|    |                                         | results and reporting them.             |         |
| 10 | . Study of ferromagnetic resonance in   | Presentation of the practical work.     | 2 hours |
|    | composite materials                     | Performing the experiment, processing   |         |
|    |                                         | the experimental data, interpreting the |         |
|    |                                         | results and reporting them.             |         |
| 11 | . Study of microwave propagation on     | Presentation of the practical work.     | 2 hours |
|    | the rectangular waveguide               | Performing the experiment, processing   |         |
|    |                                         | the experimental data, interpreting the |         |
|    |                                         | results and reporting them.             |         |
| 12 | . Determination of the anisotropy field | Presentation of the practical work.     | 2 hours |
|    | and the effective anisotropy constant   | Performing the experiment, processing   |         |
|    | of materials from ferromagnetic         | the experimental data, interpreting the |         |
|    | resonance measurements                  | results and reporting them.             |         |
| 13 | . Determination of the processional     | Presentation of the practical work.     | 2 hours |
|    | decay time of the magnetization of      | Performing the experiment, processing   |         |
|    | magnetic nanoparticle systems           | the experimental data, interpreting the |         |
|    |                                         | results and reporting them.             |         |
| 14 | . Laboratory colloquium and recoveries  | Presentation of the practical work.     | 2 hours |
|    |                                         | Performing the experiment, processing   |         |
|    |                                         | the experimental data, interpreting the |         |
|    |                                         | results and reporting them.             |         |



#### **Bibliography:**

- C. N. Marin, Măsurarea parametrilor electrici şi magnetici ai materialelor cu linii de transmisie -Notiţe pentru laborator, Editura Eurobit, Timişoara, 2014, ISBN 978-973-132-183-7.
- C. N. Marin, Proprietăți magnetice ale materialelor notițe pentru laborator, Editura Eurobit, Timişoara, 2016, ISBN 978-973-132-326-8
- C. N. Marin, Thermal and particle size distribution effects on the ferromagnetic resonance in magnetic fluids, J.Magn.Magn.Mater., 300 (2006) 397 - 406.
- P.C.Fannin, C.N. Marin, C. Couper, Precessional decay time of nanoparticles in magnetic fluids, J.Magn.Magn.Mater.322 (9-12) (2010) 1682-1685
- P.C.Fannin, I.M?I?escu, C.N.Marin, The effective anisotropy constant of particles within magnetic fluids as measured by magnetic resonance, J.Magn.Magn.Mater. 289 (2005) 162-164.
- P. C. Fannin, O. M. Bunoiu, I. Malaescu, C. N. Marin, D. Ursu, Magnetically tuning microwave propagation parameters in ferrofluids, The European Physical Journal E, 44, Issue 6 (2021) Article number 83
- P.C. Fannin, C. MacOireachtaigh, C. Couper, An improved technique for the measurement of the complex susceptibility of magnetic colloids in the microwave region. J. Magn. Magn. Mater. 322 (2010) 2428–2833

# 8. Corroboration of the course contents with the epistemic expectations of the community representative, professional associations and representative employers of the programme itself

The content of the subject is similar to that of the same subject taught at different physics faculties in the country and abroad and aims to know and acquire the specific notions for describing the basic phenomena related to microwaves and their applications.

| Type of activity                                                                                          | 9.1 Evaluation criteria                                                   | 9.2 Evaluation methods                   | 9.3 Percentage of the final mark |
|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------|----------------------------------|
| 9.4 Course                                                                                                | Proving the learning of the lecture material.                             | Oral exam                                | 80 %                             |
| 9.5 Seminar /<br>laboratory                                                                               | Assessment of problem-<br>solving skills and practical<br>laboratory work | Practical evaluation during the semester | 20 %                             |
| 9.6 Minimum performance standards                                                                         |                                                                           |                                          |                                  |
| Knowing the laws for describing microwave propagation phenomena and formulating examples of applications. |                                                                           |                                          |                                  |

## 9. Evaluation



# Date of submission: 10.01.2024

**Course coordinator**: Prof. Dr. Habil. C. N. Marin Signature:

Date of approval in department:

Seminary / laboratory: Prof. Dr. Habil. C. N. Marin Signature:

**HEAD OF THE DEPARTMENT**: Assoc. Prof. Dr. Nicoleta Ștefu Signature: