

Subject content

1. Program information

1.1 University	West University of Timisoara	
1.2 Faculty	Physics	
1.3 Department	Physics	
1.4 Study direction	Physics	
1.5 Study cycle	Master	
1.6 Study program	Advanced research methods in physics	

2. Subject matter information

2.1 Subject matter			Complements of Theoretical Physics					
2.2 Subject teacher	r		Lect.dr Ion Cotaescu					
2.3 Subject applications teacher		Lect.dr. Victor Ambrus						
2.4 Study year	1	2.5 Semester	1 2.6 Assessment type Ex 2.7 Subject Ob			Ob		
							type	ARMP 1101

3. Study time distribution

3.1 Nr. of hours/week	4	In which: 3.2 course	2	3.3 seminar/lab	2	
3.4 Total hours in educational plan	56	In which: 3.5 curs	28	3.6 seminar	56	
Time distribution:						
	LUIN	Ja		117.1Cd	S	
Study after lecture notes, bibliography or notes						
Additional documentation in the library, electronic specialty platforms/ field						
Seminar / laboratory preparations, homework, portfolio and essays					39	
Tutoring					4	
Exams					3	
Other activities						

3.7 Total number of personal study	119
hour	
3.8 Total number of hours in	175
semester	
3.9 Number of credits	7

4. Preconditions (where appropriate)

4.1 curriculum	
4.2 skills	

5. Conditions (where appropriate)

5.1 for course	•	Mathematics
5.2 for seminar/lab	•	Mathematics

6. Course Objectives

	vojecti (c)
	-to know the advanced notions in the field of Physics, which involves a critical understanding of theories and principles
	-to know the working formulas for calculations with physical quantities using properly the
Cunoștințe	principles and laws of physics
	-to know the language specific to the field
	-to know physical phenomena and interpret them by formulating hypotheses and
	operationalizing key concepts and the appropriate use of laboratory equipment
	-to deduce the working formulas for calculations with physical quantities, using appropriately
	the principles and laws of physics
Abilități	-To describe physical systems using specific theories and tools (experimental and theoretical
Abilitați	models, algorithms, schemes, etc.)
1111-1111111111	-to apply the principles and laws of physics in solving theoretical or practical problems, under
	conditions of qualified assistance
	-participate in some concrete physics experiments
	-to be autonomous in the context of handling laboratory equipment, including in situations
Responsabilitat	requiring an interdisciplinary approach
e și autonomie	- to autonomously use information sources and resources for communication and assisted
	professional training (Internet portals, specialized software applications, databases, online
	courses, etc.) both in Romanian and in a language of international circulation

7. Table of content

7.1 Course	Teaching methods	Observations
1. Newtonian mechanics. Notions of rigid solid mechanics, moments of inertia, symmetry.	Exposition, demonstration, heuristic conversation	Course support and bibliographic
2. Theoretical mechanics. Lagrange and Hamilton equations, the principle of minimum action, conservation laws.	Exposition, demonstration,	materials will be sent to students by e- mail

3. Quantum mechanics. Schrodinger equation.	Exposition, demonstration,	
Principles of quantum mechanics, operators and	heuristic conversation	
eigenvalues.		
4. The magnetic moment and the spin.	Exposition, demonstration,	
	heuristic conversation	
6. Elements of perturbation theory.	Exposition, demonstration,	
	heuristic conversation	
7. Lorentz transformations and special relativity.	Exposition, demonstration,	
	heuristic conversation	

Bibliography

- 1. Serban Titeica, Mecanica Cuantica (Editura Academiei R.S.R. 1984).
- 2. A. Messiah, Mecanica Cuantica (Editura Stiintifica 1973).
- 3. I Cotaescu, Curs de mecanica cuantica (Tipografia Universitatii din Timisoara 1990).
- 4. Arno Bohm, Quantum Mechanics (Springer-Verlag 1994)
- 5. Viorica Florescu, Tudor Marian, Mircea Zaharia, Probleme de Mecanica Cuantica (Univ. Bucuresti 1986)
- 6. L. Landau, E.M. Lifsit, Mecanica cuantica. (Editura Tehnica, Bucuresti 1968) .

7.2 Seminar(S) / labs(L)	Teaching methods	Observations
1. Inertial reference systems, Galileo	Conversation, investigation,	
transformations, coordinate systems.	case study.	
2. The problem of the two bodies, the movement	Conversation, investigation,	MISOAIU
in the central field, conservation laws.	case study.	
3. Harmonic oscillator.	Conversation, investigation, case study.	Ita
4. Hydrogen atom, quantum numbers.	Conversation, investigation, case study.	
5. ½ Spin, Schrodinger-Pauli equation.	Conversation, investigation, case study.	
6. Some calculations of perturbations to simple stationary systems.	Conversation, investigation, case study.	
7. Diamagnetism and paramagnetism.	Conversation, investigation, case study.	
8. Theory of special relativity problems.	Conversation, investigation, case study.	

Bibliography

- 1. Serban Titeica, Mecanica Cuantica (Editura Academiei R.S.R. 1984).
- 2. A. Messiah, Mecanica Cuantica (Editura Stiintifica 1973).
- 3. I Cotaescu, Curs de mecanica cuantica (Tipografia Universitatii din Timisoara 1990).
- 4. Arno Bohm, Quantum Mechanics (Springer-Verlag 1994)

5. Viorica Florescu, Tudor Marian, Mircea Zaharia, Probleme de Mecanica Cuantica (Univ. Bucuresti 1986)

6. L. Landau, E.M. Lifsit, Mecanica cuantica. (Editura Tehnica, Bucuresti 1968) .

8. Relation between subject content and the expectations of employers

Theoretical physics gives work skills in domain topics and related topics in which the future graduate could work. Mainly related with physics, chemistry, material science, etc., will be useful in practice.

9. Assessment

Activity type	10.1 Assessment criteria	10.2 Assessment	10.3 Percent in final
		method	mark
10.4 Course	The assimilation level of knowledge gained	Oral examination	60%
10.5 Seminar / labs	Capacity of solving specific problem	Written test	40%

10.6 Minimum performance standards

- -To know the basic terminology
- -To correct address three topics, even if they cannot develop completely;
- -Do not make major mistakes.

Data completării: 30.09.2024

Data avizării în department:

Titular de disciplină: Lect.dr.Ion Cotaescu

Director de departament Conf. dr. Ștefu Nicoleta

