

Subject content

1. Program information

1.1 University	West University of Timisoara
1.2 Faculty	Physics
1.3 Department	Physics
1.4 Study direction	Physics
1.5 Study cycle	Master
1.6 Study program	Advanced research methods in physics

2. Subject matter information

2.1 Subject matter			Complements of Atom and Molecule Physics					
2.2 Subject teacher			Associate Professor dr. Calin Avram					
2.3 Subject applica	tions te	eacher	Associate Professor dr. Calin Avram					
2.4 Study year	1	2.5 Semester	1 2.6 Assessment type Ex 2.7 Subject Ob			Ob		
							type	ARMP 1103

3. Study time distribution

·					
3.1 Nr. of hours/week	4	In which: 3.2 course	2	3.3 seminar/lab	2
3.4 Total hours in educational plan	56	In which: 3.5 curs	28	3.6 seminar	56
Time distribution:					
Study after lecture notes, bibliography or notes					60
Additional documentation in the library, electronic specialty platforms/ field					
Seminar / laboratory preparations, homework, portfolio and essays					40
Tutoring					-
Exams					10
Other activities					

3.7 Total number of personal study	120
hour	
3.8 Total number of hours in	176
semester	
3.9 Number of credits	7

4. Preconditions (where appropriate)

4.1 curriculum	•
4.2 skills	•

5. Conditions (where appropriate)

5.1 for course	•	Mathematics; Chemistry;
5.2 for seminar/lab	•	Mathematics; Chemistry;

6. Course Objectives

	U			
	-to know the advanced notions in the field of Physics, which involves a critical understanding of theories and principles			
	, ,			
	-to know the working formulas for calculations with physical quantities using properly the			
Cunoștințe	principles and laws of physics			
	-to know the language specific to the field			
	-to know physical phenomena and interpret them by formulating hypotheses and			
	operationalizing key concepts and the appropriate use of laboratory equipment			
	-to deduce the working formulas for calculations with physical quantities, using appropriately			
	the principles and laws of physics			
A L :1:±¥±:	-To describe physical systems using specific theories and tools (experimental and theoretical			
Abilități	models, algorithms, schemes, etc.)			
	-to apply the principles and laws of physics in solving theoretical or practical problems, under			
i. It. i	conditions of qualified assistance			
III-IIIIII	-participate in some concrete physics experiments			
	-to be autonomous in the context of handling laboratory equipment, including in situations			
Responsabilitate	requiring an interdisciplinary approach			
și autonomie	- to autonomously use information sources and resources for communication and assisted			
professional training (Internet portals, specialized software applications, databases, onlin				
	• • • • • • • • • • • • • • • • • • • •			
	courses, etc.) both in Romanian and in a language of international circulation			

7. Table of content

7.1 Course	Teaching methods	Observations
1. Atoms and molecules. Introduction.	Exposition, demonstration,	Course support and
	heuristic conversation	bibliographic
2. Atomic spectra and atomic structure. Hydrogen	Exposition, demonstration,	materials will be
atom.	heuristic conversation	sent to students by e- mail
3. The structure of Helium spectra.	Exposition, demonstration,	Illali
1	heuristic conversation	
4. Many-electron atoms. Classification of the	Exposition, demonstration,	
electronic terms.	heuristic conversation	

C A. 1 C 11 CD 1 77	E-marking demonstration	
5. Atoms in external field. The normal Zeeman	Exposition, demonstration,	
effect.	heuristic conversation	
6. The anomalous Zeeman effect.	Exposition, demonstration,	
	heuristic conversation	
7. The Stark effect.	Exposition, demonstration,	
	heuristic conversation	
8. The calculation of electronic structure. The	Exposition, demonstration,	
Hartree-Fock self-consistent field method.	heuristic conversation	
9. Born-Oppenheimer approximation.	Exposition, demonstration,	
	heuristic conversation	
10. Molecular rotation.	Exposition, demonstration,	
	heuristic conversation	
11. Molecular vibration.	Exposition, demonstration,	
	heuristic conversation	
12. Molecular electronic transitions.	Exposition, demonstration,	
	heuristic conversation	
13. Symmetry of molecules.	Exposition, demonstration,	
	heuristic conversation	
14. The electric and magnetic properties of	Exposition, demonstration,	
molecules.	heuristic conversation	
D2L2 b	•	

Bibliography

- 1. B. H. Brandsen, C. J. Joachain, "Fizica atomului si a moleculei", Ed. Tehnica, Buc.,1998;
- 2.H.Haken, H.C.Wolf, The Physics of Atoms and Quanta, Springer, Berlin, Heidelberg, 2000;
- 3.G.W.F.Drake, Atomic, Molecular & Optical Physics Handbook, AIP Press, New York 1996.
- 4.P.W. Atkins and R.S. Friedman, "Molecuar Quantum Mechanics", Oxford University Press, Oxford,1997.

7.2 Seminar(S) / labs(L)	Teaching methods	Observations
1. Classification of spectra (S).	Conversation, investigation, case study.	
2. Terms of many electron free atoms. Classifications(S).	Conversation, investigation, case study.	
3. Coupling scheme for momentum .Applications(S).	Conversation, investigation, case study.	
4. Born-Oppenheimer approximation for hydrogen molecule(S).	Conversation, investigation, case study.	
5. Symmetry group for molecules(S).	Conversation, investigation, case study.e	
6. Classification of the normal mode of molecules using symmetry(S).	Conversation, investigation, case study.	
7. Fine structure of energy levels for alkaline atoms (L).	Experiment, case study	

8. Bohr magneton determination using normal	Experiment, case study
Zeeman effect (L).	
9. Lattice parameter determination by electron	Experiment, case study
difraction (L).	
10. Geometric parameters determination for	Experiment, case study
molecules (L).	
11. Experimental investigation of vibration	Experiment, case study
energy levels of diatomic molecules(L).	
12. Anharmonic constants determination for CN	Experiment, case study
(L).	
13. Ab initio and DFT calculations of molecules I	Experiment, case study
(L).	
14. Ab initio and DFT calculations of molecules	Experiment, case study
II (L).	
D.I.I.	

Bibliography

- 1. I. E. Irodov, "Problems in Atomic and Nuclear Physics", Mir Publishers, Moscow, 1983.
- 2. P.W. Atkins and R. S. Friedman, "Molecular Quantum Mechanics", Oxford University Press, Oxford, 1997..

8. Relation between subject content and the expectations of employers

Molecular and atomic physics gives work skills in domain topics and related topics in which the future graduate could work. Mainly related with physics, chemistry, material science, etc., will be useful in practice.

9. Assessment

Activity type	10.1 Assessment criteria	10.2 Assessment method	10.3 Percent in final mark
10.4 Course	The assimilation level of knowledge gained	Oral examination	60%
10.5 Seminar / labs	Capacity of solving specific problem	Written test	40%

10.6 Minimum performance standards

- -To know the basic terminology
- -To correct address three topics, even if they cannot develop completely;
- -Do not make major mistakes.

Data completării: 16.09.2024

Titular de disciplină: Conf. dr. Avram Călin

Data avizării în department:

Director de departament: Conf. dr. Ștefu Nicoleta

