

FISA DISCIPLINEI Syllabus

1. Information about the program

1.1. University	West University of Timisoara
1.2. Faculty	PHYSICS
1.3. Department	PHYSICS
1.4. Study direction	PHYSICS
1.5. Study cycle	MASTER
1.6. Study program / qualification	METODE AVANSATE DE CERCETARE IN FIZICA/ ADVANCED
	RESEARCH METHODS IN PHYSICS

2. Subject matter information

2.1. Subject matter			Magnetic materials ARMP 1104				
2.2. Subject teacher		Dr.	Dr. Nicoleta Stefu, Associate Professor				
2.3. Subject applications teacher (seminar / laboratory)		Dr.	Nicoleta Stefu, Associate	e Pro	ofessor		
2.4. Study year	1	2.5. Semester	1	2.6. Assessment type	E	2.7. Subject type	DS, DOP

3. Study time distribution

3.1. Nr. of hours/week	4	In which:	3.2 course	2	3.3. seminar/laboratory	0/2
3.4. Total hours in educational plan	56	In which:	3.5 course	28	3.6. seminar/laboratory	28
Time distribution:						hours
Study after lecture notes, bibliog	raphy o	or notes				60
Additional documentation in the library, electronic specialty platforms/ field					20	
Seminar / laboratory preparations, homework, portfolio and essays					30	
Tutoring					0	
Exams					10	
Other activities					-	
3.7. Total number of personal study ho	ur	120				
3.8. Total number of hours in semester		176				
		_				

3.9. Number of credits 7

4. Preconditions (where appropriate)

4.1. curriculum	Mathematics - Analysis
	Electricity and magnetism
	Differential and integral calculus
	Physics of the atom
4.2. Competences	• General competencies: the ability of analysis and synthesis;

accumulation of basic general knowledge; proper use of terminology in physics and computer science in written and oral
communication in English; Basic Skills PC operating; ability to
work independently and in teams.
• Professional Skills: identification and proper use of the main
physical laws and principles in a given context; use of software
packages for data analysis and processing.

5. Conditions (where appropiate)

5.3 for course	• Laptop + projector+ whiteboard
5.4 for seminar/lab	 Devices from the lab of Magnetic Materials PC. Each seminar activity will be done in small groups (3-4 students) on the topics described in the seminar section.

6. Objectives of the discipline - expected learning outcomes to the formation of which the completion and promotion of the discipline contribute

Knowledge	 to know the advanced notions in the field of Physics, which involves a critical understanding of theories and principles to know the language specific to the field to know physical phenomena and interpret them by formulating hypotheses and operationalizing key concepts and the appropriate use of laboratory equipment
	 to know the constructive and operating principles of the equipment for obtaining and characterizing materials and to explain how to use it
Skills	 to compare the theoretical results provided by the specialized literature with those of an experiment carried out within a professional project To describe physical systems using specific theories and tools (experimental and theoretical models, algorithms, schemes, etc.) to apply the principles and laws of physics in solving theoretical or practical problems, under conditions of qualified assistance to characterize the specific properties of some materials taking into account
	 to characterize the specific properties of some inacchars taking into account the field in which they are used to identify the most appropriate methods to develop new materials with well-defined properties
Responsibility an autonomy	 participate in some concrete physics experiments to critically analyze a specialized report, scientific communication with a medium degree of difficulty in the field of physics to be autonomous in the context of handling laboratory equipment, including

in situations requiring an interdisciplinary approach
• to autonomously use information sources and resources for communication
and assisted professional training (Internet portals, specialized software
applications, databases, online courses, etc.) both in Romanian and in a
language of international circulation

7. Table of content

7.1 Course – 28 hours	Teaching methods	Observations
Lecture 1. (4 hours) Introductory lecture. Chapter 1. Magnetic materials. Angular momenta; Magnetic Moments	Lecture, introductory conversation, heuristic conversation, illustration, use of analogies and algorithms.	 The lecture will be interactive; learning is facilitated by engaging the students in conversation episodes, capture of attention, updating the knowledge previous acquired and systematization / fixing of new knowledge Compulsory reading: Lecture notes 1 available on e-learning platform Optional supplementary material:
		 [1] Pages 87-90 [4] pages 62-67 Video This lecture is part of 8.02 Physics II: Electricity and Magnetism, as taught in Spring 2002 by Dr. Walter Lewin at MIT. https://www.youtube.com/watch?v=TJ GRatHJgEI
Lecture 2 (4 hours) Magnetic Moment and its Energy in a Magnetic Field; Definitions of Magnetization and Magnetic Susceptibility; Classification of Magnetic Materials; Diamagnetism; Paramagnetism. The Langevin Function of Magnetization and the Curie Law	Lecture, conversation, mathematical calculation, fixing and deepening knowledge Building a mind map	Compulsory reading: Lecture notes 2 available on e-learning platform Optional supplementary material: [1] Pages 90-99 [4] pages 104-106
Lecture 3 (4 hours) The Brillouin Function of Magnetization and the Curie Law; Magnetic Ordered State; Weiss molecular field theory (the classical theory); Generalization of Weiss molecular field theory; Magnetism and hysteresis	Lecture, conversation, mathematical calculation, fixing and deepening knowledge	Compulsory reading: Lecture notes 3 available on e-learning platform Optional supplementary material:

4. J.M.D. Coey, Magnetism and magnetic mate 7.2 Seminar / labs	Teaching metho		Observations/Bibliog raphy
 Bibliography B. D. Cullity, C. D. Graham, Introduction To Peter Mohn, Magnetism In The Solid State, Nicola Spaldin, Magnetic Materials, Fundar 	An Introduction, Corrected S nentals And Applications,	Second Prir Cambridge	nting, 2006, Springer University Press, 2011
applications Characteristic length scales; Small particles ; Quantum dots and molecular clusters; Bulk nanostructures; Ferrofluids; Magneto- rheological and magneto-elastic systems; Smart materials	knowledge conversation	 Lecture notes 7 available on e-learning platform Optional supplementary material: [3] pages 177-189 [4] pages 264-268, 293-300 	
resonance. Magnetic relaxation; Ferromagnetic resonance ; Antiferromagnetic resonance Lecture 7 (4 hours) Chapter 4. Magnetic nanoparticle systems and	Lecture, conversation, retaining and deepening	Optional supplementary material: [1] Pages 428-435 [4] pages 305-325 Compulsory reading:	
Lecture 6 (4 hours) Chapter 3. Magnetization dynamics Larmor precession. Electron paramagnetic resonance; Bloch equations. Magnetic	Lecture, conversation, mathematical calculation, fixing and deepening knowledge	Compulsory reading: <i>Lecture notes 6</i> available on e-learnin platform	
Crystallographic anisotropy; Shape anisotropy; Induced anisotropy. Magnetostriction; Other ferromagnetic phenomena (magneto-caloric, magneto- resistance, magneto-optic)	mathematical calculation, fixing and deepening knowledge	Lecture no platform	53-65
Lecture 4 (4 hours) The quantum theory of ferromagnetism. The Heitler –London model. The Heisenberg- Dirac hamiltonian. The exchange interaction ; Magnetism and hysteresis. Chapter 2. Magnetic anisotropy. Anisotropy Lecture 5 (4 hours)	Lecture, conversation, mathematical calculation, fixing and deepening knowledge	Lecture no platform	ry reading: <i>otes 4</i> available on e-learning supplementary material: 197 197 195

	susceptibility and magnetic	available on the e-
Seminar 2. (4 Hours) Determination of the saturation magnetisation and of the dimension of the particles of a ferofluid by means of magnetisation curve.	permeability Data processing and interpretation of the results. Students will work in small groups (3-4 students). Will read and discuss the article in bibliography, will be given a set of measurements and will follow the algorithm described in article and do the calculations presented there, using the appropriate software. In the end they will present their work and the results, discussing the differences between their results and the ones presented in the article.	learning platformCompulsorybibliography:I. Hrianca, I. Malaescu,C. N. Marin, N. Stefu,Magnetic relaxationprocesses in radio-frequency field fordispersed monodomenicparticles,AnaleleUiversitatii de Vest dinTimisoara, Vol. XXXVI,Seria Stiinte Fizice(1997) 17
Seminar 3. (4 hours) Determination of particle dimension by means of Neel and Brown relaxation times in suspensions of magnetic nanoparticles.	Data processing and interpretation of the results. Students will work in small groups (3-4 students). Will read and discuss the article in bibliography, will be given a set of measurements and will follow the algorithm described in article and do the calculations presented there, using the appropriate software. In the end they will present their work and the results, discussing the differences between their results and the ones presented in the article.	Compulsory bibliography: I. Malaescu, L. Gabor, F. Claici, N. Stefu, "Preparation of ferrofluids with magnetite and mixed ferrite particles and characterization in a radiofrequency field", Analele Uiversitatii de Vest din Timisoara, Vol. XXXVIII, Seria Stiinte Fizice (1998) 90
Seminar 4. (4 hours) Determination of the magnetic properties of the ferrofluid from resonance measurements	Data processing and interpretation of the results. Students will work in small groups (3-4 students). Will read and discuss the article in bibliography, will be given a set of measurements and will follow the algorithm described in article and do the calculations presented there, using the appropriate software. In the end they will present their work and the results, discussing the differences between their results and the ones presented in the article.	Compulsory bibliography: I. Hrianca, I. Malaescu, N. Stefu, F. Claici, Behavior in Radiofrequency Field and Magnetic Resonance of Ferrofluids, Analele Universitatii de Vest din Timisoara, Vol. XL, Seria Stiinte Fizice, (1999)

Seminar 5. (4 hours) Determination of anisotropy constant by means of magnetic resonance	Data processing and interpretation of the results. Students will work in small groups (3-4 students). Will read and discuss the article in bibliography, will be given a set of measurements and will follow the algorithm described in article and do the calculations presented there, using the appropriate software. In the end they will present their work and the results, discussing the differences between their results and the ones presented in the article.	Compulsory bibliography: P.C.Fannin, C.N.Marin, I. Malaescu, N.Stefu, "An investigation of the microscopic and macroscopic properties of magnetic fluids", Physica B: Condensed Matter, Volume 388, Issues 1-2, Pages 1-440 (15 January 2007) Pages 87-92
Seminar 6 (4 hours) Study of the anisotropy constant and Lande factor by means of static and dynamic measurements in ferrofluids with mixed ferrite particles	Data processing and interpretation of the results. Students will work in small groups (3-4 students). Will read and discuss the article in bibliography, will be given a set of measurements and will follow the algorithm described in article and do the calculations presented there, using the appropriate software. In the end they will present their work and the results, discussing the differences between their results and the ones presented in the article.	Compulsory bibliography: I. Malaescu, N. Stefu, L. Gabor, <i>Relaxation</i> Process and Ferromagnetic Resonance Investigation of Ferrofluids with Mn – Zn and Mn – Fe Mixed Ferrite Particles, J. Magn. Magn. Mater, 234 (2001) 299-305
Seminar 7. (4 hours) Determination of the microwave specific loss power of magnetic fluids subjected to a static magnetic field	Data processing and interpretation of the results. Students will work in small groups (3-4 students). Will read and discuss the article in bibliography, will be given a set of measurements and will follow the algorithm described in article and do the calculations presented there, using the appropriate software. In the end they will present their work and the results, discussing the differences between their results and the ones presented in the article.	Compulsory bibliography: P.C.Fannin, I. Malaescu, C.N.Marin, N.Stefu, <i>Microwave specific loss</i> <i>power of magnetic fluids</i> <i>subjected to static</i> <i>magnetic field</i> , Eur. Phys. J. E., 27, 145-148 (2008)

- 1. I. Hrianca, I. Malaescu, C. N. Marin, **N. Stefu**, *Magnetic relaxation processes in radio-frequency field for dispersed monodomenic particles*, Analele Uiversitatii de Vest din Timisoara, Vol. XXXVI, Seria Stiinte Fizice (1997) 17
- 2. I. Malaescu, L. Gabor, F. Claici, N. Stefu, "Preparation of ferrofluids with magnetite and mixed ferrite particles and characterization in a radiofrequency field", Analele Uiversitatii de Vest din Timisoara, Vol. XXXVIII, Seria Stiinte Fizice (1998) 90
- 3. I. Hrianca, I. Malaescu, N. Stefu, F. Claici, *Behavior in Radiofrequency Field and Magnetic Resonance of Ferrofluids*, Analele Universitatii de Vest din Timisoara, Vol. XL, Seria Stiinte Fizice, (1999)
- 4. P.C.Fannin, C.N.Marin, I. Malaescu, N.Stefu, "An investigation of the microscopic and macroscopic properties of magnetic fluids", Physica B: Condensed Matter, Volume 388, Issues 1-2, Pages 1-440 (15 January 2007) Pages 87-92

 I. Malaescu, N. Stefu, L. Gabor, Relaxation Process and Ferromagnetic Resonance Investigation of Ferrofluids with Mn – Zn and Mn – Fe Mixed Ferrite Particles, J. Magn. Magn. Mater, 234 (2001) 299-305
 P.C.Fannin, I. Malaescu, C.N.Marin, N.Stefu, Microwave specific loss power of magnetic fluids subjected to static magnetic field, Eur. Phys. J. E., 27, 145-148 (2008)

8. Relation between subject content and the expectations of employers

|--|

9. Assesment

Activity type	9.1 Assesment criteria	9.2 Assesment method	9.3 Percent in final mark
9.4 Course	 the clarity, logic and scientific level of the presentation will be evaluated; correctness of the answers to the questions will be evaluated The ability of explaining the studied magnetic phenomena will be evaluated 	Summative assessment - Oral examination based on an essay on a topic discussed in class, presented in English	70%
9.5. Seminar/labs	 After each seminar activity, each student will present a report in English and will be evaluated as follows: -his/her work in the group will be assessed the correctness of results obtained after processing the data will be discussed and evaluated the problems that occurred and the way they were solved during the activity will be evaluated the discussion on the correlation with the results presented in the article will be evaluated. 	Formative assessment: - continuous	30%

Mark 5 corresponds to the minimum accumulated knowledge, i.e. for the student capacity to:
Correctly answer 3 questions from the theoretical part (in final evaluation), mark 5 in seminar.

Completion date:15.09.2024

Subject teacher's signature: Associate Professor Dr. Nicoleta STEFU,

Subject applications teacher's signature: Associate Professor Dr. Nicoleta STEFU,

> Department Director' Signature: Associate Professor Dr. Nicoleta STEFU,