

SYLLABUS

1. Information on the study programme

1.1. Higher education institution	West University of Timisoara
1.2. Faculty	Faculty of Physics
1.3. Department	Physics Department
1.4. Study program field	Physics
1.5. Study cycle	Master
1.6. Study programme / Qualification	Advanced Research Methods in Physics/ according to COR:
	physicist (211101); teacher (233001); research assistant
	(248102);

2. Information on the course

2.1. Course title			Sol	ar Energy Conversion (Al	RM	P 2302)	
2.2. Lecture instructor	•		Dr.	Robert Blaga			
2.3. Seminar / laborate	ory ii	nstructor	Dr.	Robert Blaga			
2.4. Study year	2	2.5. Semester	1	2.6. Examination type	Е	2.7. Course type	DS, Ob

3. Estimated study time (number of hours per semester)

3.1. Attendance hours per week	4	out of which: 2	2	3.3. seminar /	2
		lecture		laboratory	
3.4. Attendance hours per semester	56	out of which:	28	3.6. seminar /	28
		3.5 lecture		laboratory	
Distribution of the allocated amount of time*					
Study of literature, course handbook and personal notes					
Supplementary documentation at library or using electronic repositories					20
Preparing for laboratories, homework, reports etc.					40
Exams					
Tutoring					-
Projects					-
3.7. Total number of hours of 114 individual study					

individual study	
3.8. Total number of hours per	170
semester	
3.9. Number of credits (ECTS)	6

4. Prerequisites (if it is the case)

4.1. curriculum	Mathematics, Computational physics
4.2. competences	Elementary knowledge on programming

5. Requirements (if it is the case)

5.1. for the lecture	-
5.2. for the seminar / laboratory	Individual access to computer

6. Specific acquired competences

Professional competences	Understanding the main themes from solar radiation physics		
_	Acquiring knowledge on solar radiation field		
	• Explaining the quantities, concepts and phenomena in the field of		
	solar radiation using terms, notions, theories, models, equations,		
	schemes and graphical representations.		
	• Elaboration of numerical algorithms for estimating the available		
	solar energy in space and the amount of electricity that can be		
	obtained from it by photovoltaic conversion.		
Transversal competences	Basic data analysis knowledge		
	• Accessing the NASA and other databases, selecting and sorting		
	data		
	• Developing the skills to use the R programming environment		

7. Course objectives

J	
7.1. General objective	Understanding photovoltaic conversion of solar energy in the
	terrestrial and extraterrestrial environment.
7.2. Specific objectives	Developing students' skills to model the radiative transfer of solar
	irradiance through the atmosphere with parametric models.
	Developing sutdents' skills in understanding and analyzing aerosol
	distribution and dynamics.
	Developing students' skills to model the operation of photovoltaic
	systems.

8. Content

8.1. Lecture	Teaching methods	Remarks, details
1. Course Introduction.	Interactive lecture	
Climate change and		
renewable energy. Types of		
solar energy technologies.		
2. Basics of solar system	Interactive lecture	
dynamics. Blackbody		
radiation. The AM0		
spectrum and the solar		
constant.		
3. Radiative transfer	Interactive lecture	
through the atmosphere.		
The Beer-Lambert law and		
the standard atmosphere		
approximation.		
4. Solar irradiance	Interactive lecture	
modelling at ground level:		
the beam and diffuse		
components.		

5. Atmospheric	Interactive lecture	
transmittances. Aerosol		
optics.		
6. Aerosol growth and	Interactive lecture	
dynamics.		
7. Sources of solar and	Interactive lecture	
aerosol data: ground		
stations, satellites, and		
NWPs.		
8. Working with spatial	Interactive lecture.	
data. Processing raster files		
and creating maps in R.		
9. Band theory of	Interactive lecture	
semiconductors: a brief		
reminder		
10. Physics of a solar cell.	Interactive lecture	
Shockley equation and the		
equivalent circuit.		
11. Modelling the operation	Interactive lecture	
of a solar cell. Output power		
and conversion efficiency.		
12. Current progress in PV	Interactive lecture	
conversion. Multijunction		
and thin film cells. New		
materials and innovative		
designs.		
13. Invited lecture(s).	Interactive lecture.	
Concentrator solar systems /		
Designing a PV system		
14. Invited lecture(s).	Interactive lecture.	
Solar cells in space /		
Obtaining solar grade		
silicon feedstock.		

Recommended literature

- 1. Jacobson, M.Z. 100% clean, renewable energy and storage for everything. Cambridge University Press. (2020)
- 2. Morbidelli, A. Modern celestial mechanics: aspects of solar system dynamics, Taylor and Francis. (2002)
- 3. Paulescu, M., Paulescu, E., Gravila, P. and Badescu, V. Weather modeling and forecasting of PV systems operation (Vol. 358). London: Springer (2013).
- 4. Sengupta, M., Habte, A., Wilbert, S., Gueymard, C. and Remund, J. *Best practices handbook for the collection and use of solar resource data for solar energy applications* (No. NREL/TP-5D00-77635). National Renewable Energy Lab.(NREL), Golden, CO (United States) (2021)
- 5. Seinfeld, J.H. and Pandis, S.N. *Atmospheric chemistry and physics: from air pollution to climate change*. John Wiley & Sons (2016).
- 6. A. Luque, S. Hegedus. Handbook of photovoltaic science and engineering. John Wiley & Sons (2011).

8.2. Seminar / laboratory	Teaching methods	Remarks, details
1. Introduction to R	Guidance Questioning	
2. Representing the AM0 spectrum and the blackbody radiation for the temperature of the Sun.	Guidance Questioning Individual implementation of the numerical algorithms	
3. Computing the ApparentSolar Time and Sun ElevationAngle.Basic statistics and datarepresentation.	Guidance Questioning Individual implementation of the numerical algorithms	
4. Representing the solar irradiance components.Implementing empirical models for global and diffuse solar irradiance.	Guidance Questioning Individual implementation of the numerical algorithms	
5.1. Implementing a parametric clear-sky model.5.2. Processing and representing aerosol optical data from AERONET.	Guidance Questioning Individual implementation of the numerical algorithms	
6. Mie scattering. Aerosol transport and deposition.	Guidance Questioning Individual implementation of the numerical algorithms	
7. Download and pre-process data from CAMS and MODIS. Compare to ground measured data from BSRN.	Guidance Questioning Individual implementation of the numerical algorithms	
8. The <i>rnaturalearth</i> library in R. Representing Geiger- Koppen climate date on the worldmap.	Guidance Questioning Individual implementation of the numerical algorithms	
9.1. Measurement of spectral solar irradiance.9.2. Processing and representation of aerosol optical depth recorded by Mars rovers.	Guidance Questioning Individual implementation of the numerical algorithms	
10. Measuring the spectral characteristics of a solar cell.	Guidance Questioning Individual implementation of the numerical algorithms	

11. Exercises involving the linear approximations for a solar cell operating parameters.	Guidance Questioning Individual implementation of the numerical algorithms	
12. Exercises involving the spectral response and other relevant factors among different solar cell types.	Guidance Questioning Individual implementation of the numerical algorithms	
13. Designing a PV system.	Guidance Questioning Processing data.	
14.1. Discussion of advanced research topics.14.2 Course retrospective.	Guidance Questioning Individual implementation of the numerical algorithms	

Recommended literature

- 1. Jacobson, M.Z. 100% clean, renewable energy and storage for everything. Cambridge University Press. (2020)
- 2. Morbidelli, A. *Modern celestial mechanics: aspects of solar system dynamics*, Taylor and Francis. (2002)
- 3. Paulescu, M., Paulescu, E., Gravila, P. and Badescu, V. *Weather modeling and forecasting of PV systems operation* (Vol. 358). London: Springer (2013).
- Sengupta, M., Habte, A., Wilbert, S., Gueymard, C. and Remund, J. *Best practices handbook for the collection and use of solar resource data for solar energy applications* (No. NREL/TP-5D00-77635). National Renewable Energy Lab.(NREL), Golden, CO (United States) (2021)
- 5. Seinfeld, J.H. and Pandis, S.N. *Atmospheric chemistry and physics: from air pollution to climate change*. John Wiley & Sons (2016).
- 6. A. Luque, S. Hegedus. Handbook of photovoltaic science and engineering. John Wiley & Sons (2011).

10. Evaluation

Activity	10.1. Assessment criteria	10.2. Assessment	10.3. Weight in
		methods	the final mark
Lecture	Degree of knowledge of concepts about	Written exam	34% + 33%
	solar irradiance and PV output power	Paper or R project	
	modelling and aerosol properties.	presentation.	
Seminar /	Solving a data analysis exercise using	Continuous assessment	33.3 %
laboratory	the R language.		
10.6. Minimum needed performance for passing			

The student is able to estimate the available solar energy at the top of the atmosphere and to model a solar cell operating at STC.

Date of completion 19.09.2024

Signature (lecture/seminar instructor) Dr. Robert Blaga

Date of approval

Signature (director of the department)